Benutzerhandbuch AC Servoregler YukonDrive® EtherCAT® CANopen

QUICKLINK www.harmonicdrive.de/1100

...just move it!

In dieser Dokumentation ist die Funktionalität folgender Geräte beschrieben: YukonDrive®-10xx-xDx-xx (CANopen) YukonDrive®-10xx-xAx-xx (EtherCAT®)

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Inhalt

1.	Allgemeines	4
1.1	Maßnahmen zu Ihrer Sicherheit	4
1.2	Einleitung CANopen	5
1.3	Einleitung EtherCAT [®]	6
1.4	Systemvoraussetzungen	6
1.5	Weiterführende Dokumentation	6
2.	Montage und Anschluss CANopen	7
2.1	Adresse einstellen	7
2.2	Bedeutung der LEDs	9
2.3	Installation	10
2.4	Übertragungsgeschwindigkeiten	
2.5	Anzeige der Betriebszustände über 7-Segmentanzeige	
2.6	Hardwarefreigabe	
З.	Montage und Anschluss EtherCAT [®]	
3.1	Installation und Verkabelung	14
3.2	Pinbelegung der RJ-45 Buchse	
3.3	Bedeutung der LEDs	
3.4	Anzeige der Betriebszustände über 7-Segmentanzeige	
3.5	Hardwarefreigabe	
4.	Inbetriebnahme und Konfiguration	
4.1	Allgemeine Inbetriebnahme CANopen/EtherCAT®	
	4.1.1 Inbetriebnahme	
	4.1.2 Ablauf der Inbetriebnahme	
	4.1.3 Inbetriebnahme über DRIVE MANAGER	
	4.1.4 Auswahl der Betriebsart (Modes of Operation)	
	4.1.5 Funktionalität der Betriebsarten	
	4.1.6 Einstellen der Timingparameter	
4.2	CAN - spezifische Konfiguration	
	4.2.1 Einstellen der Software-Adresse und Baudrate	
	4.2.2 Inbetriebnahmehinweise	22
	4.2.3 Test an übergeordneter Steuerung	22
	4.2.4 Datenhandling	22
	4.2.5 Steuerfunktionen	23
	4.3 Inbetriebnahme und Konfiguration EtherCAT®	23
5.	Parametrieren der Geräte CANopen	23
5.1	Implementierte CiA-301-Funktionalität	23
	5.1.1 Communication Objects	23
	5.1.2 Objektverzeichnis der CiA-301	24
5.2	Parameterkanal (Service Data Objects)	
	5.2.1 Datentypen	
	5.2.2 Darstellung der Datentypen im Steuerprotokoll	
	5.2.3 Zugriff auf Geräteparameter	27
5.3	Beispiele zum SDO-Handling	27
	5.3.1 Parametersatz-Download	
5.4	PDO-Transmission Types	

5.5	Ereignisgesteuertes Versenden der TxPDO	
5.6	PDO-Mapping	
	5.6.1 Mapping aligemein	55 44
57	5.6.2 Mappinginiweise	
J./	ווכמונטבמניו עווגנוטוו	
6.	Parametrieren der Geräte EtherCAT [®]	
6.1	Unterstützte EtherCAT®-Funktionalität	
6.2	Konfiguration für den Betrieb an einer Steuerung	
7	Implomentierte CiA-402-Eurktienslität	40
7. 71	Cerätesteuerung und Zustandemaschine	40- ۱۸
7.1	711 Allgemeine Information	40 40
	71.2 Zustandsmaschine	
	71.3 Gerätezustände	
7.2	Option codes	
7.3	Device Control Objects	
7.4	Einheiten und Normierungen, Factor Group	
7.5	E/A-Abbild	
	7.5.1 Objekt 60FDh – Digitale Eingänge	
	7.5.2 Objekt 2079h - MPRO_INPUT_STATE	
	7.5.3 Ubjekt 208Fh - MRPU_UUTPUT_STATE	
	7.5.4 Digitale Ausgalige via Felubus setzen	
8.	Betriebsarten	52
8.1	CiA-402 kompatible Betriebsarten	52
	8.1.1 Parametrierung des YukonDrive® für Ansteuerung via CiA-402	52
	8.1.2 Steuerwort CiA-402	
	8.1.3 Statuswort CiA-402	
8.2	Betriebsarten mit Profilgenerierung im Antrieb	
	8.2.1 Profile Velocity Mode	
	8.2.2 Profile Position Mode	סכ הח
	8.2.4 Velocity Mode (II/f Betrieb)	
8.3	Zyklische Betriebsarten. Profilgenerierung in der Steuerung	
	8.3.1 Interpolated Position Mode	
	8.3.2 Cyclic Synchronous Position Mode (nur EtherCAT®)	65
	8.3.3 Cyclic Synchronous Velocity Mode (nur EtherCAT®)	
	8.3.4 Cyclic Synchronous Torque Mode (nur EtherCAT®)	67
	8.3.5 Externe Drehzahl-/ Drehmoment Vorsteuerung	67
q	Emergency Objects	69
91	Fehlernuittierung allgemein	69
9.2	Fehlerquittierung über Bussystem	
10.	lechnologiefunktionen	/0
10.1	IOUCH Probe	/U
	10.1.1 Deschreibung der Herstenerspezifischen Implementierung	/U/ دح
10 7	Rundtischfunktion	
11.	EDS-Datei, Objektverzeichnis, Parameterliste	74
11.1	EDS-Datei, Objektverzeichnis	74

1. Allgemeines

1.1 Maßnahmen zu Ihrer Sicherheit

Die Antriebsregler der YukonDrive®-Familie sind schnell und sicher zu handhaben.

Zu Ihrer eigenen Sicherheit und für die sichere Funktion Ihrer Maschine beachten Sie bitte unbedingt:

- Lesen Sie zuerst das Operating Manual!
- Sicherheitshinweise beachten!

Von elektrischen Antrieben gehen grundsätzlich Gefahren aus: Elektrische Spannungen > 230 V/460 V:

- Auch 10 min. nach Netz-Aus können noch gefährlich hohe Spannungen anliegen. Deshalb auf Spannungsfreiheit pr
 üfen!
- rotierende Teile
- heiße Oberflächen

Ihre Qualifikation:

- Zur Vermeidung von Personen- und Sachschäden darf nur qualifiziertes Personal mit elektrotechnischer Ausbildung an dem Gerät arbeiten.
- Kenntnis der nationalen Unfallverhütungsvorschriften (z. B. VBG4 in Deutschland)
- Kenntnisse bzgl. Aufbau und Vernetzung mit dem Feldbus CAN-Bus

Beachten Sie bei der Installation:

- Anschlussbedingungen und technische Daten unbedingt einhalten.
- Normen zur elektrischen Installation, z. B. Leitungsquerschnitt, Schirmung, usw.
- Elektronische Bauteile und Kontakte nicht berühren (elektrostatische Entladung kann Bauteile zerstören).

1.2 Einleitung CANopen

CANopen ist ein auf dem seriellen Bussystem CAN (Controller Area Network) basierendes Vernetzungskonzept. CAN hat viele spezifische Vorteile, insbesondere die Multi-Master-Fähigkeit, die Echtzeitfähigkeit, das resistente Verhalten bei elektromagnetischen Störungen sowie die gute Verfügbarkeit und die niedrigen Kosten der Controller Chips. Diese Vorteile führten dazu, dass CAN auch in der Automatisierungstechnik ein weit verbreitetes Bussystem ist.

Einfache herstellerübergreifende Kommunikation

Eine Integration beliebiger Geräte in einem herstellerspezifischen Netz ist mit erheblichem Aufwand verbunden. Um dieses Problem zu lösen, ist CANopen entwickelt worden. Bei CANopen wird die Verwendung der CAN-Identifier (Nachrichtenadressen), das zeitliche Verhalten auf dem Bus, das Netzwerkmanagement (z. B. Systemstart und Teilnehmerüberwachung) sowie die Codierung der Dateninhalte einheitlich spezifiziert. Durch CANopen ist es möglich, Geräte unterschiedlicher Hersteller mit geringstem Aufwand in einem Netz kommunizieren zu lassen. CANopen nutzt eine Teilmenge der durch den CAL angebotenen Kommunikationsdienste zur Definition einer offenen Schnittstelle. Die ausgewählten CAL-Dienste werden sozusagen in einer Bedienungsanleitung zusammengefasst. Diese Anleitung heißt CANopen-Kommunikationsprofil.

CANopen-Funktionalität des YukonDrive®

Das CANopen-Kommunikationsprofil ist in der CiA-301 dokumentiert und regelt das "Wie" der Kommunikation. Hierbei wird in Prozess-Daten-Objekte (PDO's) und Service-Daten-Objekte (SDO's) unterschieden. Zusätzlich definiert das Kommunikationsprofil ein einfaches Netzwerkmanagement.

Basierend auf den Kommunikationsdiensten des CiA-301 (Rev. 4.01) wurde das Geräteprofil für drehzahlveränderliche Antriebe CiA-402 (Rev2.0) erstellt. Hier werden die unterstützten Betriebsarten und Geräteparameter beschrieben.

In den folgenden Abschnitten bekommen Sie einen Überblick über die im YukonDrive[®] integrierte CANopen-Funktionalität. Anschließend erhalten Sie die notwendigen Informationen für die Inbetriebnahme.

1.3 Einleitung EtherCAT®

Wenn es um Echtzeit-Ethernet-Systeme geht, hat sich EtherCAT® heute als feste Größe im Automatisierungsbereich etabliert. Ausschlaggebend ist hierfür nicht nur die aus dem Home-Office-Bereich bekannte IEEE802.3 / 100BaseTX Ethernetphysik, sondern ebenso das gute Preis-/Leistungsverhältnis für die Realisierung in Master- und Slave Bau-gruppen. Die Vernetzung kann wahlweise in Stern-, Ring- oder Linien- Struktur durch Standard Patchoder Crossover- Kabel erfolgen und ist somit leicht an die Infrastruktur der Maschine anzupassen.

Zur Minimierung des Einarbeitungsaufwandes wurde ab dem Application Layer auf bekannte Kommunikationsund Geräteprofile zurückgegriffen. So können Anwender, die mit CANopen Profilen wie z. B. CiA-301 oder CiA-402 vertraut sind, mit minimalem Aufwand auf diese neue Feldbustechnologie umsteigen. Im YukonDrive® haben wir sämtliche Erfahrungen aus vergangenen Jahren im Bereich CANopen mit dieser neuen Feldbustechnologie vereint und ein Maximum an Kompatibilität und Funktionalität erreicht.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

1.4 Systemvoraussetzungen

Es wird davon ausgegangen, dass Sie über ein gängiges CANopen-Einrichtungsprogramm bzw. einen CANopen-Schnittstellentreiber verfügen. Die genauen Protokolldefinitionen entnehmen Sie bitte der CAL-Spezifikation. Mit Hilfe dieser Objekte ist es möglich, die eigentliche CANopen-Kommunikation sehr flexibel zu konfigurieren und den speziellen Wünschen des Anwenders anzupassen.

1.5 Weiterführende Dokumentation

- Operating Manual für die Inbetriebnahme des Antriebsgerätes
- Anwendungshandbuch für die weitere Parametrierung zur Anpassung an die Anwendung.
- Die Dokumentation zum YukonDrive[®] kann von unserer Homepage http://www.harmonicdrive.de im Bereich Downloads als PDF-Datei heruntergeladen werden.
- CiA-301 (Rev. 4.0): Application Layer and Communication Profile
- CiA-402 (Rev. 2.0): Device Profile Drives and Motion Control
- EtherCAT[®] Communication Specification Version 1.0 2004
- EtherCAT[®] Indicator Specification Proposal V0.912005
- IEC61158-2-12 bis IEC61158-6-12

2. Montage und Anschluss CANopen

 \triangle

Achtung: CANopen-Anschlussstecker nicht während des Betriebs aufstecken oder abziehen!

2.1 Adresse einstellen

Tabelle 7.1

Schritt	Aktion	Anmerkung
1.	Informieren Sie sich, welche Adresse für das einzubau- ende Gerät vorgesehen ist.	Fragen Sie Ihren Projekteur
2.	Wählen Sie die Art der Adressierung: • per Busadressparameter • per DIP-Schalter (S4) • per Busadressparameter und DIP-Schalter (S4)	siehe unten

Adresseinstellung beendet, weiter siehe Einbau.

Drei Möglichkeiten zur Adressvergabe

- Nur über Busadressparameter 2005 COM_CAN_Adr: Sie finden den Parameter 2005 COM_CAN_Adr (Werkseinstellung = 1) im Sachgebiet "Feldbus" - Unterpunkt "CANopen".
- Nur über DIP-Schalter S4
- Kombination aus Busadressparameter und DIP-Schalter S4 CAN-Adresse = Hardwareadresse (S4)
 + Parameter 2005 COM_CAN_Adr. Diese Variante ist vorteilhaft, wenn z. B. mit bis zu 15 Antrieben immer der gleiche Parametersatz genutzt werden soll, die unterste Adresse aber 30 ist. Der Parameter 2005 COM_CAN_Adr wird nun auf 30 gesetzt. Die Festlegung der Geräteadresse erfolgt dann über den Codierschalter, der im Bereich von 0-15 variiert wird.

Abbildung 7.2

Lage des CAN-Anschlusses am YukonDrive®

Adresse einstellen

Adresseinstellung über DIP-Schalter

Über den DIP-Schalter S4 am Positionierregler kann dezimal eine Adresse zwischen 0 und 63 gewählt werden. Der DIP-Schalter ist wie folgt belegt: Die Stellen 1...6 sind für die Adresseinstellung vorgesehen, die Stelle 7 für das Aktivieren / Deaktivieren des 120 0hm Busabschlusses im Gerät.

Funktion/Belegung:

 $\begin{array}{l} \text{Dip-Schalter 1} & \rightarrow \text{Wertigkeit } 2^{\circ} = 1 \\ \text{Dip-Schalter 2} & \rightarrow \text{Wertigkeit } 2^{1} = 2 \\ \text{Dip-Schalter 3} & \rightarrow \text{Wertigkeit } 2^{5} = 4 \\ \dots \\ \text{Dip-Schalter 6} & \rightarrow \text{Wertigkeit } 2^{5} = 32 \\ \text{Dip-Schalter 7} & \rightarrow \text{Busabschluss ON/OFF} \end{array}$

Einstellen der Adresse "3" über die Dip-Schalter:

- Schalter 1 und Schalter 2 auf ON stellen
- 2⁰ + 2¹ = 3
- Resultierende Geräteadresse = 3 (Wenn die Softwareadresse = 0 eingestellt ist)

Hinweis:

Änderungen an der CAN-Adresse werden bei einem

- Reset-Node-Kommando
- Neustart (Einschalten des Gerätes) übernommen.

Hinweis: Die aktive Bus-Adresse findet man in der Boot-up-Message.

2.2 Bedeutung der LEDs

Die CAN-Option des YukonDrive® besitzt zwei Diagnose LEDs (H14, H15).

Abbildung 9.1

Gerät mit CANopen Option

Die LEDs haben folgende Funktion:

Tabelle 10.1

Bedeutung der LEDs

LED	Funktion	Bedeutung
H14 (gelbe LED)	CANopen Netzwerkzustand	Die LED zeigt den aktuellen Netzwerkzustand. • NMT STOPPED → blinken mit 800 ms Zyklus • NMT PRE-OPERATIONAL → blinken mit 1600 ms Zyklus • NMT OPERATIONAL → leuchtet konstant.
H15 (grüne LED)	Versorgungsspannung CAN-Option	Leuchtet konstant, wenn die 24V-Versorgung der Option vom CAN-Bus anliegt.

2.3 Installation

Tabelle 10.2

Tabelle 10.2		Installation		
Schritt	Aktion	Anmerkung		
1	Stellen Sie sicher, dass die Hardwarefreigabe am YukonDrive® (X4) verdrahtet ist.	siehe Operating Manual YukonDrive®		
2	Verdrahten Sie den CAN-Anschluss über den Steckverbinder X32 Anschluss der CAN-Signalleitungen Anschluss der Schnittstellen-Spannungsversorgung Aktivierung des geräteinternen Busabschlusswiderstands am letzten Antriebsregler	siehe Tabelle Spezifikation CAN-Busanschluss und Tabelle Belegung des Anschlusses X19		
3	Schalten Sie das Antriebsgerät ein.			
Installation ist beendet, weiter siehe Kapitel 4 "Inbetriebnahme und Konfiguration".				

Die CANopen-Schnittstelle ist im YukonDrive[®] integriert. Der Anschluss erfolgt über den Steckverbinder X32. Die Schnittstelle ist gegenüber der Antriebsreglerelektronik potenzialgetrennt ausgeführt. Die Versorgung der potenzialgetrennten Sekundärseite erfolgt kundenseitig über den Steckverbinder X32.

Tabelle 11.2

Spezifikation CAN-Busanschluss

Anschluss	Federzugklemme
Wellenabschlusswiderstand - Busabschluss -	 120 Ω (intern) Aktivierung des Busabschlusses im Gerät über Schalter 8 an der CAN-Option
Max. Eingangsfrequenz	1 MHz
Ext. Spannungsversorgung	+24 V +25 %, 50 mA (potenzialfrei zum Antriebsregler)
Spannungswelligkeit	max. 3 Vss
Stromaufnahme	max. 50 mA pro Teilnehmer
Kabeltyp	4-adrig, Wellenwiderstand 120 Ω

Tabelle 12.1

Belegung des Anschlusses X32

Klemme X32	PIN	PIN	Funktion	Beschreibung
	10	5	CAN_+24V	externe 24V-Versorgung
	9	4	CAN_H	CAN High
	8	3	CAN_SHLD	CAN Shield (optional)
<u>→ -</u>	7	2	CAN_L	CANLow
	6	1	CAN_GND	CAN Ground (OV)

Hinweis: Die beiden Stecker der Klemme X32 sind im Gerät miteinander verbunden.

Hinweis: Die externe 24 V-Versorgung der Optionsplatine ist zwingend erforderlich. Sie wird nicht durch das Gerät versorgt.

2.4 Übertragungsgeschwindigkeiten

Der CAN-Bus kann mit folgenden Baudraten betrieben werden:

Tabelle 12.2

Übertragungsgeschwindigkeiten

Übertragungs- geschwindigkeit	Maximale Leitungslänge über das Gesamtnetz ¹⁾	
1000 kBaud	25 m	Werkseinstellung
500 kBaud	100 m	
250 kBaud 2)	250 m	
125 kBaud 2)	500 m	
50 kBaud ^{a)}	1000 m	
20 kBaud 3)	2500 m	

¹⁾ Bus Längenabschätzung (gerundet) auf Basis 5 ns/m Laufzeitverzögerung und geräteinterner Ein-/Ausgangsverzögerung wie folgt:

1M-800 kbit/s: 210 ns

500 - 250 kbit/s: 300 ns (einschließlich 2 x 40 ns für Optokoppler)

125 kbit/s: 450 ns (einschließlich 2 x 100 ns für Optokoppler)

50 -10 kbit/s: Effektive Verzögerung = Schaltverzögerung rezessiv nach dominant plus dominant nach rezessiv geteilt durch zwei.

²⁾ Für Buslängen über 200 m wird der Einsatz von Optokopplern empfohlen. Wenn Optokoppler eingesetzt werden, beeinflusst dies die erreichbare maximale Buslänge infolge der Laufzeitverzögerung der Optokoppler.

³⁾ Für Buslängen über 1 km sind möglicherweise CAN Bridges oder Repeater notwendig.

Bei der Auswahl der Übertragungsrate ist jedoch darauf zu achten, dass die Leitungslänge nicht über die zulässige Leitungslänge für diese Übertragungsrate hinausgeht.

2.5 Anzeige der Betriebszustände über 7-Segmentanzeige

D1	D2	Bedeutung	Parameter			
System	Systemzustände					
8.	8.	Gerät im Resetzustand				
	0.	Selbstinitialisierung bei Geräteanlauf	(Start)			
S .*)	1.	Nicht einschaltbereit (keine ZK-Spannung) ¹⁾	(NotReadyToSwitchOn)			
S.	2.	Einschaltsperre (ZK in Ordnung, Endstufe nicht bereit) $^{\eta}$	(SwitchOnDisabled)			
	З.	Einschaltbereit (Endstufe bereit)	(ReadyToSwitchOn)			
	4.	Eingeschaltet (Gerät steht unter Spannung) 2)	(SwitchedOn)			
	5.	Antrieb bereit (Antrieb bestromt und für Sollwertvorgabe bereit) $^{\scriptscriptstyle 2)}$	(OperationEnable)			
	6.	Schnellhalt 2)	(QuickStopActive)			
	7.	Fehlerreaktion aktiv ²⁾	(FaultReactionActive)			
Е	R	Fehler (siehe unten)	(Fault)			
Im Fehl	lerfall we	rden abwechselnd eingeblendet				
E	R.	Anzeige für Fehler bzw. nicht quittierbarer Fehler				
х	х	Fehler-Nummer (dezimal)				
Y	Y	Fehler-Lokalisierung (dezimal)				
⁹ S. blinkt, wenn die Funktion STO (Safe Torque Off) aktiv ist, Anzeige erlischt wenn Funktion inaktiv ist.						

Tabelle 13.1

Anzeige der Betriebszustände über 7-Segmentanzeige

*) Es handelt sich um keine "sichere Anzeige" im Sinne der EN 61800-5-2

²⁾ Der Punkt blinkt, wenn die Endstufe aktiv ist.

Beispiel der Blinksequenz:

 \rightarrow ER > 02 > 05 * ER > 02 > 05 ...

Tabelle 13.2

Beispiel der Blinksequenz

Er	Fehler:	ER = "Störung"
82	Fehlername:	02 = "Fehler in der Parameterliste"
85	Fehlerbeschreibung:	05 = "Funktion zur Prüfung der aktuellen Parameterliste"

2.6 Hardwarefreigabe

Der YukonDrive[®] besitzt auf der Steuerklemme einen Steuereingang zur Hardwarefreigabe ENPO. Dieser Eingang muss zum Betrieb der Endstufe mit 24 V beschaltet sein. Das Gerät bietet zusätzlich die Funktion "STO (Safe Torque Off)" (siehe "Beschreibung der Sicherheitsfunktion STO", Dok.-Nr. 1007417). Bei diesen Geräten muss die Logik zu dieser Funktion gemäß Anwendungshandbuch durch die übergeordnete Steuerung erfüllt werden.

Hinweis: Ohne Beschaltung der Eingänge ENPO und ISDSH verbleibt das Gerät im Zustand 1 = "Nicht Einschaltbereit" (Not Ready to Switch On) oder 2 = "Einschaltsperre" (Switch On Disabled). Erst nach korrekter Beschaltung kann der Zustand durch ein "Shutdown"- Kommando via Bus verlassen werden.

3. Montage und Anschluss EtherCAT®

3.1 Installation und Verkabelung

Aufbau des EtherCAT®-Netzwerks

In einem EtherCAT[®]-Netzwerk befinden sich immer ein EtherCAT[®]-Master (z. B. Industrie PC) und eine variable Anzahl von Slaves (z. B. Servoregler, Busklemmen etc.). Jeder EtherCAT[®]-Slave besitzt zwei Ethernet-Ports. Damit kann jeweils von Slave zu Slave verkabelt werden. Alle EtherCAT[®]-Teilnehmer werden in der Regel in einer Linie zusammengesteckt, wobei der Master am Anfang der Leitung sitzt. Am letzten Slave in der Linie bleibt der zweite Ethernet-Port offen.

Abbildung 14.1

Anschluss EtherCAT®

IN- und OUT-Buchse (RJ-45 Eingang/Ausgang)

Jeder EtherCAT[®]-Slave verfügt über zwei RJ-45 Buchsen. Dabei ist der obere Port (X15) der Eingang (IN) und der untere Port (X16) der Ausgang (OUT) des Slaves. Das ankommende Kabel (aus der Richtung des Masters) wird mit Port IN verbunden, das abgehende Kabel zum nächsten Slave mit Port OUT. Beim letzten Slave in der Reihe bleibt der Port OUT unbeschaltet. Ein offener Ausgang führt bei einem Slave intern zu einem logischen Kurzschluss der Transmit- (Tx) und Receive- (Rx) Leitungen. Aus diesem Grund ist jedes EtherCAT[®]-Netzwerk von seiner Topologie als ein logischer Ring anzusehen.

Abbildung 14.2

EtherCAT®-Option

Oberer RJ-45 Port = Eingang, unterer RJ-45 Port = Ausgang

Achtung: Fehler in der Verkabelung (Vertauschen von Eingang und Ausgang) kann zu einer fehlerhaften Adressierung durch den Master führen.

Verbindungskabel

Als Verbindungskabel sind Ethernet-Patchkabel oder Crossoverkabel gemäß der CATSe-Spezifikation geeignet. Als Kabellängen sind 0,3 bis max. 100 m zulässig.

Achtung: Verwenden Sie niemals EtherCAT[®] und Standard-Ethernet zusammen in einem physikalischen Netzwerk. Dies kann zu Beeinträchtigungen bis hin zum Zusammenbruch der Kommunikation führen! Um Verwechslungen zu vermeiden, verwenden Sie immer unterschiedliche Farben für EtherCAT[®]- und Ethernetkabel.

3.2 Pinbelegung der RJ-45 Buchse

Tabelle 15.1 Bedeutung der LEDs ohne zusätzliche Status / Error LED PIN Farbe Kabel-Aderpaar Funktion 1 white/orange 2 TxData + 2 2 TxData orange RecvData + 3 white/green 3 4 blue Unused white/blue 1 Unused 5 3 RecvData -6 green 7 white/brown 4 Unused 8 brown 4 Unused

Abbildung 15.2

RJ-45 Buchse

Hinweis: Ethernet-Kabel sind im IT-Fachhandel in verschiedenen Längen verfügbar. Verwenden Sie CAT5e Kabel oder besser.

3.3 Bedeutung der LEDs

An jeder RJ-45 Buchse befinden sich 2 LEDs

Abbildung 16.1

Gerät mit EtherCAT®-Option

Die beiden LEDs an den RJ-45 Buchsen haben folgende Bedeutung:

Tabelle 16.2

Bedeutung der LEDs ohne zusätzliche Status / Error LED

LED	Funktion	Bedeutung
Obere LED	Link / Activity	Off = no link → keine Verbindung zu einem anderen Teilnehmer
		On = Link → Verbindung zu einem anderen Teilnehmer besteht, kein Datenaustausch
		Blinking = Activity → Datenaustausch aktiv
	RUN (am unteren Port nur aktiv, wenn hier ein weiterer Teilnehmer angeschlossen ist)	Off = Initialisation → Gerät ist im Zustand Initialisierung
Untere		Blinking = Pre-Operational → Gerät ist im Zustand "Pre-Operational"
LED		Single Flash = Safe-Operational → Gerät ist im Zustand "Safe-Operational"
		On = Operational → Gerät ist Betriebsbereit

Abhängig vom Hardware – Stand des Gerätes kann zusätzlich zu den beiden LEDs an den zwei RJ-45 Buchsen noch eine zusätzliche Status / Error LED vorhanden sein. In diesem Fall haben die LEDs die in der folgenden Tabelle dargestellte Bedeutung.

Tabelle 17.1

Bedeutung der LEDs mit zusätzlicher Status / Error LED

LED	Funktion	Bedeutung			
Obere LED		Off = no link → keine Verbindung zu einem anderen Teilnehmer			
	Link / Activity	On = Link → Verbindung zu einem anderen Teilnehmer besteht, kein Datenaustausch			
Untere LED	Link (PHY)	On = Link Off = Kein Link			
Status LED (RUN / Error)	Status / Fehler	Rot = Fehler Off = No Error Blinking = Invalid Configuration Single Flash = Local Error Double Flash = Watchdog timeout Grün = RUN Off = Initialisation → Gerät ist im Zustand Initialisierung Blinking = Pre-Operational → Gerät ist im Zustand "Pre-Operational" Single Flash = Safe-Operational → Gerät ist im Zustand "Safe-Operational" On = Operational → Gerät ist Betriebsbereit			

3.4 Anzeige der Betriebszustände über 7-Segmentanzeige

Tabelle 18.1

D1	D2	Bedeutung	Parameter
Systemzuständ	ie		
8.	8.	Gerät im Resetzustand	
	0.	Selbstinitialisierung bei Geräteanlauf	(Start)
S.*)	1.	Nicht einschaltbereit (keine ZK-Spannung) $^{\eta}$	(NotReadyToSwitchOn)
S.	2.	Einschaltsperre (ZK in Ordnung, Endstufe nicht bereit) ¹⁾	(SwitchOnDisabled)
	З.	Einschaltbereit (Endstufe bereit)	(ReadyToSwitchOn)

Tabelle 18.2

Beispiel der Blinksequenz: \rightarrow ER > 02 > 05 * ER > 02 > 05 ...

D1	D2	Bedeutung	Parameter	
	4.	Eingeschaltet (Gerät steht unter Spannung) ²⁾	(SwitchedOn)	
	5.	Antrieb bereit (Antrieb bestromt und für Sollwertvorgabe bereit) $^{\mbox{\tiny 2)}}$	(OperationEnable)	
	6.	Schnellhalt 2)	(QuickStopActive)	
	7.	Fehlerreaktion aktiv ²⁾	(FaultReactionActive)	
E	R	Fehler (siehe unten)	(Fault)	
Im Fehlerfall we	erden abwechselnd	eingeblendet		
E	R.	Anzeige für Fehler bzw. nicht quittierbarer Fehler		
х	Y	Fehlernummer (dezimal)		
х	Y	Fehlerlokalisierung (dezimal)		
⁹ S. blinkt, wenn die Funktion STO (Safe Torque Off) aktiv ist, Anzeige erlischt wenn Funktion inaktiv ist. *) Es handelt sich um keine "sichere Anzeige" im Sinne der EN 61800-5-2.				
²⁾ Der Punkt blinkt, wenn die Endstufe aktiv ist.				

Tabelle 18.3

Er	Fehler:	ER = "Störung"
82	Fehlername:	02 ="Fehler in der Parameterliste"
85	Fehlerbeschreibung:	05 = "Funktion zur Prüfung der aktuellen Parameterliste"

3.5 Hardwarefreigabe

Der YukonDrive[®] besitzt auf der Steuerklemme einen Steuereingang zur Hardwarefreigabe ENPO. Dieser Eingang muss zum Betrieb der Endstufe mit 24 V beschaltet sein. Das Gerät bietet zusätzlich die Funktion "STO" (Safe Torque Off) (siehe "Beschreibung der Sicherheitsfunktion STO", Dok.-Nr. 1007417). Bei diesen Geräten muss die Logik zu dieser Funktion gemäß Anwendungshandbuch durch die übergeordnete Steuerung erfüllt werden.

Hinweis:

Ohne Beschaltung der Eingänge ENPO und ISDSH verbleibt das Gerät im Zustand 1 = "Nicht Einschaltbereit" (Not Ready to Switch On) oder 2 = "Einschaltsperre" (Switch On Disabled). Erst nach korrekter Beschaltung kann der Zustand durch ein "Shutdown- Komando" via Bus verlassen werden.

4. Inbetriebnahme und Konfiguration

4.1 Allgemeine Inbetriebnahme CANopen/EtherCAT®

4.1.1 Inbetriebnahme

Die Bedienoberfläche DRIVEMANAGER dient der allgemeinen Inbetriebnahme des Antriebssystems. Der DRIVEMANAGER beinhaltet Tools zur Identifizierung von Motordaten, bei Servomotoren den Zugriff auf eine Motordatenbank und die allgemeine Konfiguration der Geräte. Die Erstinbetriebnahme ist ein eigenes Kapitel in der Bedienung über die Oberfläche, die im Anwendungshandbuch des Gerätes detailliert beschrieben ist.

4.1.2 Ablauf der Inbetriebnahme

Voraussetzungen:

- Das Antriebsgerät ist gemäß Operating Manual verdrahtet und die Erstinbetriebnahme durchgeführt. (Zum Test der CAN-Kommunikation reicht der Anschluss der Versorgungsspannung der CAN-Option sowie der Steuerspannung).
- Wenn der Motor bestromt werden soll, muss zusätzlich die Hardwarefreigabe (ENPO) und der "STO (Safe Torque Off)" korrekt beschaltet werden.

Hinweis: Nähere Informationen zur Optimierung der Softwarefunktionen und Regelkreise entnehmen Sie bitte dem Anwdungshandbuch zum Gerät.

Schritt	Aktion	Anmerkung
1	Kontrollieren Sie die Verdrahtung. Beachten Sie, dass die Hardwarefreigabe ENPO (X4) nicht beschaltet ist.	
2	Schalten Sie die Netzversorgungsspannung und die 24 V-Versorgung der CAN-Schnittstelle ein.	
3	Konfigurieren Sie das Antriebsgerät mit dem Anwen- dungshandbuch.	(Ein-/Ausgänge, Softwarefunktionen,)
4	Testen Sie die Regelungsqualität und optimieren Sie ggf. die Reglereinstellungen mit Hilfe des Anwen- dungshandbuchs.	
5	Stellen Sie die Parameter für die CAN-Kommunikation ein. Erforderlich sind die Baudrate und die Geräte- adresse. Die Adresse kann per Software und Hardware selektiert werden. Weiterhin muss das Mapping durchgeführt werden sowie die aktive Betriebsart gemäß CIA-301/402 ausgewählt werden.	Software- und Hardware- Adresse werden addiert
6	Testen Sie den Antrieb an der übergeordneten Steue- rung, siehe Kapitel 3.4.	
7	Abschließend speichern Sie die Einstellung.	Aktives Gerät \rightarrow Einstellung im Gerät sichern

Hinweis:

Zum Thema "Einheiten und Normierungen" lesen Sie bitte Kapitel 7.4.

4.1.3 Inbetriebnahme über DriveManager

Tabelle 20.1		Vorgehensweise zur Inbetriebnahme mit Hilfe des Anwendungshandbuches
	Erstinbetriebnah	me per Operating Manual
1.	Ļ	Voraussetzung ist die grundsätzliche Erstinbetriebnahme mit Hilfe des Operating Manual Das Anwenderhandbuch befasst sich ausschließlich mit der Anpassung der Softwarefunk- tionen.
	Inbetriebnahme p	per Anwendungshandbuch
2.	Ļ	Parametrieren des Antriebsreglers mit Unterstützung durch das Anwendungshandbuch. Dazu gehört z. B. die Konfiguration der Technologiefunktionen
	Inbetriebnahme p	per Benutzerhandbuch CANopen
З.	Ļ	Konfiguration der feldbusspezifischen Einstellungen (z. B. Baudrate) mit Unterstützung durch dieses Dokument.
	Überprüfung der	eingestellten Anwendungslösung
4.	Ļ	Eine Überprüfung der Anwendungslösung sollte zur Sicherheit von Mensch und Maschine nur bei kleinen Drehzahlen erfolgen. Die richtige Drehrichtung ist sicherzustellen. Im Notfall kann durch Wegnahme des ENPO-Signals der Antrieb durch Sperrung der Reglerendstufe gestoppt werden.
	Abschluss der Int	betriebnahme
5.	Ļ	Nach erfolgreicher Inbetriebnahme sichern Sie bitte Ihre Einstellungen (mit DriveManager) und speichern Sie den Datensatz im Gerät ab.
	•	

4.1.4 Auswahl der Betriebsart (Modes of Operation)

Für den Betrieb der Geräte über CANopen gibt es verschiedene Steuermodi. Die Auswahl der aktiven Betriebsart erfolgt grundsätzlich über das CiA-402-Objekt 6060h (Modes of Operation).

Der YukonDrive® unterstützt die Betriebsarten gemäß der CiA-402:

- Profile Position Mode
- Profile Velocity Mode
- Homing Mode
- Interpolated Position Mode
- Cyclic Synchronous Position Mode (nur EtherCAT®)
- Cyclic Synchronous Velocity Mode (nur EtherCAT®)
- Cyclic Synchronous Torque Mode (nur EtherCAT®)

Im Rahmen der Erstinbetriebnahme führt der Anwender die Parametrierung des Antriebs mit Motordaten, Regelungseinstellungen, I/O Konfiguration etc. durch. Direkt mit der jeweiligen Betriebsart verbunden ist auch immer eine zugehörige Regelungsart. Mittels Umschaltung des Modes of Operation via CANopen/EtherCAT® kann direkt zwischen Lageregelung, Drehzahlregelung und Drehmomentregelung gewechselt werden. So befindet sich der Antrieb beim Profile Velocity Mode in Drehzahlregelung und beim Profile Position Mode in Lageregelung.

4.1.5 Funktionalität der Betriebsarten

Abbildung 21.1

Funktionalität der Betriebsarten Modi im Bild ändern

Für den Anwender ist es möglich, zwischen den verschiedenen Betriebsarten zu wechseln, so lange diese vom Gerät unterstützt werden. Das Statuswort beinhaltet Bits, deren Bedeutung abhängig von der Betriebsart ist. Für die Überwachung ist es notwendig, dass beim Wechseln der Betriebsarten die Bits ihre Bedeutung ändern, siehe hierzu auch Kapitel 6.

4.1.6 Einstellen der Timingparameter

Um eine korrekte Kommunikation mit der Steuerung zu gewährleisten, müssen beim YukonDrive[®] drei Timing – Parameter eingestellt werden. Diese sollten in der Regel alle auf den gleichen Wert eingestellt werden. Dabei ist darauf zu achten, dass die drei Parameter in verschiedenen Einheiten eingestellt werden müssen (siehe Tabelle).

Tabelle 21.2	Einstellen der Timingparameter
--------------	--------------------------------

Para – ID	Name / Objekt	Einheit
306	Interner Interpolator – Zykluszeit	ms
2015	Periode Kommunikationszyklus / 0x1006	μs
2266 Index 0 Index 1	0x60C2 Interpolationszeit Basis Interpolationszeit Exponent	s -

Für EtherCAT® ist der Parameter 2266 (Objekt 0x60C2) auf die Zykluszeit der Sollwerte (bzw. der Telegramme) zu stellen.

4.2 CAN - spezifische Konfiguration

4.2.1 Einstellen der Software-Adresse und Baudrate

Über die folgenden Parameter des Gerätes können mittels DRIVEMANAGER die Software-Adresse und die Baudrate eingestellt werden:

Tabelle 21.3

Parameter in der Funktionsmaske Bussysteme

Parameter	Funktion	Beschreibung
2005-COM_CAN_Adr	Adresse CANopen	Adressvorgabe über Parameter. Weitere Informationen zur Adresseinstellung, siehe Kapitel 2.1
2006-COM_CAN_Baudrate	Baudrate	Zulässige Baudraten, siehe Kapitel 2.3

Hinweis: Der YukonDrive® hat per Default eine Baudrate von 1MBit. Die tatsächliche Adresse wird durch Addition der Software- und der Hardwareadresse berechnet und mit Hilfe des Parameters 2058 "COM_CAN_Adr_Act" angezeigt. Eine Änderung der Baudrate im Parameter 2006 "COM_CAN_Baudrate" wird erst nach einem Neustart des YukonDrive® wirksam. Die aktuelle Baudrate wird mit Hilfe des Parameters 2059 "COM_CAN_Baudrate_act" angezeigt.

4.2.2 Inbetriebnahmehinweise

Es kann aus verschiedenen Gründen dazu kommen, dass ein Antriebsgerät auf ein Telegramm nicht antwortet:

- Es erfolgt keine Antwort, wenn der Telegrammrahmen (Baudrate, Datenbreite) am Leitrechner nicht korrekt ist.
- Es erfolgt keine Antwort, wenn ein Antriebsgerät mit der falschen Busadresse angesprochen wird.
- Es erfolgt keine Antwort, wenn die serielle Verbindung zwischen Leitrechner und Antriebsgerät nicht korrekt aufgebaut ist.
- Es erfolgt keine Antwort, wenn die 24 V-Versorgung am CAN-Anschluss fehlt oder die Verkabelung fehlerhaft ist.
- Es erfolgt keine gültige Antwort, wenn mehrere Geräte mit gleicher Geräteadresse an dem Bus angeschlossen sind.
- Es erfolgt keine Antwort, wenn sich das Gerät in bestimmten Netzwerkzuständen befindet. Der aktuelle Netzwerkzustand kann mit Hilfe des Parameters 2060 "COM_CAN_NMT_State" geprüft werden.

Tabel	le	22.1	
Tuber	۰c	22.1	

Parameter 2060	Beschreibung
0	Bootup
1	Init
4	Stopped / Safe OP
5	Operational
127	Pre-Operational

4.2.3 Test an übergeordneter Steuerung

Zum Aktivieren von geänderten Einstellungen muss das Gerät einmal ausgeschaltet werden. Nach dem Einschalten muss das Gerät, nach einer Initialisierungszeit von einigen Sekunden, einmalig eine Boot-up-Message (ID 700h + Node ID = 701h bei Geräteadresse 1) versenden. Ist dies der Fall, ist die Kommunikation in Ordnung.

Hinweis: Beim Übertragen von Daten zum Gerät mittels SDO-Telegrammen sollte die Anzahl der übertragenen Datenbytes berücksichtigt werden. Es muss dafür die korrekte Längeninformation im Controlbyte übergeben werden. Alternativ ist aber auch ein SDO-Transfer ohne Angabe der Datenlänge möglich. Auch dafür ist allerdings die korrekte Bedienung des Controlbytes im SDO-Telegramm zu beachten.

4.2.4 Datenhandling

Speichern der Einstellungen: Alle Konfigurationsdaten können mit dem DRIVEMANAGER gesichert werden. Hinweis: Beachten Sie allerdings, dass einige Objekte RAM-Größen sind, welche korrekt durch die Steuerung bedient und initialisiert werden müssen. Dazu gehört z. B. das Objekt 6060h Modes of Operation.

Auslieferungszustand wiederherstellen:

ACHTUNG: Das Wiederherstellen des Auslieferungszustandes setzt den Regler auf die Defaulteinstellungen vor dem parametrieren der antriebsspezifischen Gerätedaten zurück! Stellen Sie sicher, dass Sie vor dem zurücksetzen auf Auslieferungszustand die notwendigen Motor-, Geber- und Regelungsdaten gesichert haben!.

Um die Parametereinstellung der Geräte wieder auf Auslieferungszustand zu bringen, gibt es die folgenden beiden Möglichkeiten:

Über Feldbus

Schreiben Sie auf Subindex 3 des Objektes 200Bh-PARA_SetCmd den Wert 1. Damit wird das komplette Gerät auf Werkseinstellung gesetzt.

Hinweis: Beachten Sie dabei, dass sich dies auch auf die Einstellungen der Baudrate / Geräteadresse auswirkt. Nach einem "Reset Node"-Kommando oder dem Neustart des Gerätes werden die Änderungen wirksam.

Parameter 2060

Über DriveManager

In der Baumstruktur des DRIVEMANAGER wählen Sie zunächst den entsprechenden YukonDrive® aus. Mittels der rechten Maustaste öffnet sich ein Kontextmenü und Sie wählen dabei den Eintrag "Reset Device Setting".

Hinweis: In allen Fällen bedarf es einer Zeit von ca. 10 s bis sich das Gerät wieder als betriebsbereit meldet. In dieser Zeit führt das Gerät einen Selbsttest durch und ändert alle Einstellungen auf Werkseinstellung. Diese Einstellung bleibt aber erst erhalten, wenn eine Sicherung der Daten im Gerät erfolgt. Das Sichern der Daten wird über die Bedienoberfläche DRIVEMANAGER oder durch Beschreiben des Objektes 200Bh-PARA_SetCmd Subindex 1 = 1 über das Bussystem ausgelöst. Den Speichervorgang kann man auch über das Objekt 1010 hex durchführen!

ACHTUNG: Das Sichern der Daten dauert einige 100 ms. Während dieser Zeit darf das Gerät nicht ausgeschaltet werden, da sonst die Einstellungen verlorengehen.

Das Objekt 200Bh-PARA_SetCmd Subindex 1 wird nach dem Speichervorgang automatisch vom Gerät auf O gesetzt. Dieser Vorgang kann zur zeitlichen Überwachung der Funktion herangezogen werden.

4.2.5 Steuerfunktionen

Steuerfunktionen können optimal an die jeweilige Anwendung angepasst werden. Deswegen werden mehrere Steuerformate angeboten. Die Auswahl der entsprechenden Formate kann durch den Master während der Einrichtphase über den Bus oder durch Verstellen der entsprechenden Geräteparameter erfolgen. Die Zustandsmaschine der Antriebsgeräte hat eine Zykluszeit von 1 ms. Alle Steuerbefehle und Sollwerte werden in dieser Zykluszeit vom Antriebsgerät weiterverarbeitet.

HINWEIS: Steuer-PDOs werden mit einer minimalen Zykluszeit von 1 ms verarbeitet. Treffen Protokolle schneller im Gerät ein, so überschreibt das zuletzt eingetroffene Telegramm das vorangegangene. Es erfolgt keine Fehlermeldung, wenn Telegramme aufgrund zu kurzer Zykluszeit überschrieben werden.

4.3 Inbetriebnahme und Konfiguration EtherCAT®

Die Inbetriebnahme über EtherCAT[®] ist mit dem mitgelieferte XML File in Ihrer Steuerung möglich. Alle weiteren Schritte der Inbetriebnahme und Konfiguration sind abhängig von der eingesetzten Steuerung. Hinweise dazu entnehmen Sie bitte der Dokumentation Ihres Steuerungsherstellers.

5. Parametrieren der Geräte CANopen

5.1 Implementierte CiA-301-Funktionalität

5.1.1 Communication Objects

- Boot-up nach CiA-301 V4.01 (Guarding Boot-up über Identifier 700h)
- Vier variabel mappbare TxPDOs (transmission type 1 bis 240, 254 und 255 dez möglich)
- Vier variabel mappbare RxPDOs (transmission type 1 bis 240, 254 und 255 dez möglich)
- Ein Server SDO (Definition der zeitlichen Bedingungen beachten; typische Bearbeitungszeit im Gerät ca. 5 ms, je nach Auslastung)
- Ein Emergency Object-Fehlercode nach CiA-402 plus herstellerspezifischer Fehlerort und -nummer, Betriebsstunden des Gerätes
- Ein Sync-Object
- NMT-Statemachine nach CiA-301
- Nodeguarding und heart beat (siehe unten)
- Bearbeitungszyklus: PDO-Protokolle können in einer minimalen Zykluszeit von 1 ms verarbeitet werden. Treffen Protokolle schneller ein, so werden vorangegangene Protokolle überschrieben. SDO-Protokolle und NMT-Services werden azyklisch verarbeitet. Typische Bearbeitungszeiten liegen zwischen 1 und 5 ms.
- Initialisierungswerte der COB-Ids nach Predefined Connection Set
- Zugriff auf Geräteparameter 2000h 5FFFh (expedited/non-expedited)

5.1.2 Objektverzeichnis der CiA-301

Eine komplette Übersicht der unterstützten CAN-Objekte des YukonDrive® finden Sie im EDS-File. Dort sind sowohl die CANopen Objekte der CiA-301, der CiA-402 als auch die herstellerspezifischen Objekte des Gerätes zu finden. Die folgende Liste zeigt einen Auszug des Objektverzeichnisses mit wichtigen CiA-301 Objekten. Auf diese Objekte wird im Folgenden z. B. bei den Transmission Types oder dem Mapping eingegangen.

Tabelle 24.1 Objektverzeichni				
Objekt Nr.	Objekt Name	Objekt Code	Тур	Attr.
0x1000	Device_Type	VAR	Unsigned32	ro
0x1001	Error_Register	VAR	Unsigned8	ro
0x1003	Pre-Defined_Error_Field One subentry	ARRAY	Unsigned32	ro
0x1005	COB-ID_SYNC	VAR	Unsigned32	rw
0x1006	Communication_Cycle_Period	VAR	Unsigned32	rw
0x1007	Synchronous_Window_Length	VAR	Unsigned32	rw
0x1008	Manufacturer device name	String		
0x1009	Manufacturer hardware version	String		
0x100A	Manufacturer software version	String		
0x100C	Guard_Time	VAR	Unsigned16	
0x100D	Life_Time_Factor	VAR	Unsigned8	
0x1010	Store parameters	ARRAY	Unsigned32	rw
0x1011	Restore default parameters	ARRAY	Unsigned32	rw
0x1014	COD-ID_EMCY	VAR	Unsigned32	
0x1017	Producer_Heartbeat_Time	VAR	Unsigned16	rw
0x1018	ldentity_Object alle 4 Einträge (Seriennummer,) unterstützen	RECORD	Identity (23h)	ro
0x1400	1st_Receive_PDO_Parameter	RECORD	PDO CommPar	rw
0x1401	2nd_Receive_PDO_Parameter	RECORD	PDO CommPar	rw
0x1402	3rd_Receive_PDO_Parameter	RECORD	PDO CommPar	rw
0x1403	4th_Receive_PDO_Parameter	RECORD	PDO CommPar	rw
0x1600	1st_Receive_PDO_Mapping max. 8 objects	RECORD	PDO Mapping (21h)	rw
0x1601	2nd_Receive_PDO_Mapping max. 8 objects	RECORD	PDO Mapping	rw
0x1602	3rd_Receive_PDO_Mapping max. 8 objects	RECORD	PDO Mapping	rw
0x1603	4th_Receive_PDO_Mapping max. 8 objects	RECORD	PDO Mapping	rw
0x1800	1st_Transmit_PDO_Parameter	RECORD	PDO CommPar (20h)	rw
0x1801	2nd_Transmit_PDO_Parameter	RECORD	PDO CommPar (20h)	rw
0x1802	3rd_Transmit_PDO_Parameter	RECORD	PDO CommPar	rw
0x1803	4th_Transmit_PDO_Parameter	RECORD	PDO CommPar	rw
0x1A00	1st_Transmit_PDO_Mapping max. 8 objects	RECORD	PDO Mapping	rw
0x1A01	2nd_Transmit_PDO_Mapping max 8 objects	RECORD	PDO Mapping	rw
0x1A02	3rd_Transmit_PDO_Mapping max 8 objects	RECORD	PDO Mapping	rw
0x1A03	4th_Transmit_PDO_Mapping max 8 objects	RECORD	PDO Mapping	rw

1003366 02/2015

5.2 Parameterkanal (Service Data Objects)

Das Service-Daten-Objekt (SDO) ermöglicht den schreibenden und lesenden Zugriff auf das Objektverzeichnis. Dieses SDO wird entsprechend der CAL-Spezifikation durch das CMS-Objekt Multiplexed Domain realisiert. Das Protokoll ist so ausgelegt, dass Daten beliebiger Länge übertragen werden können. Für den SDO-Transfer ist im Gerät ein sogenannter SDO-Server integriert. Die Kommunikation erfolgt über zwei reservierte Identifier.

Receive SDO: 600 h Transmit SDO: 580 h

Grundsätzlich wird in der CAL-Spezifikation zwischen drei Protokolldiensten unterschieden:

- Download-Protokoll (Schreiben)
- Upload-Protokoll (Lesen)
- Abort-Protokoll (Fehler)

Die Up- und Download-Protokolle unterscheiden zusätzlich zwischen:

Expedited Multiplexed Domain Protocol, für den Zugriff auf Objekte mit einer Datenlänge bis zu 4 Byte (oben dargestellt) und Multiplexed Domain Protocol, für den Zugriff auf Objekte mit einer beliebigen Länge Die Einträge im Bereich "Steuerfeld" werden vom CANopen-Treiber generiert. Sie sind nur zur vollständigen Dokumentation der erwähnten Beispiele mit aufgeführt. Die Einträge sind abhängig von den übertragenen Daten. Das Steuerfeld ist im Profil CiA-301 beschrieben.

5.2.1 Datentypen

Hinweis: Über die Bedienoberfläche DRIVEMANAGER werden viele Parametereinstellungen in Form von Wertersatztexten angezeigt.

Beispiel: Parameter 450-MOT_Type = PSM

Beim Schreiben und Lesen über Feldbus müssen für diese Wertersatztexte die entsprechenden Zahlenwerte benutzt werden. Diese Werte werden bei Öffnen des Parameters im DRIVEMANAGER in Klammern () angezeigt.

Beispiel: Parameter 450-MOT_Type = PSM (1)

Die Antriebsgeräte unterstützen folgende Parameterdatenformate:

Tabel	lle	2	6.1
Tuber	nc.	~	0.1

```
Datentypen
```

Datentyp	Wertebereich	Funktion	
USIGN8	0255		
USIGN16	0 65535	Vorzeichenlos	
USIGN32	0-4294967295		
INT8	-128127		
INT8	-3276832767	Ganzzahl, vorzeichenbehaftet	
INT32	-21474836482147483647		
FLOAT32	siehe IEEE	32 Bit-Fließkommazahl im IEEE-Format	
STRING		ASCII-Zeichen, max. 100 Byte bei Busbetrieb inkl. Nullterminator	

5.2.2 Darstellung der Datentypen im Steuerprotokoll

Alle Datentypen werden vorzeichenrichtig als 32 Bit-Größen im Intel-Format dargestellt.

Tabelle 26.2			Zuordnung der Da	atentypen im Datenfeld	
Datenbyte des Steuerprotokolls	З	4	5	6	
USIGN8 / INT8* USIGN16 / INT16* USIGN32 / INT32	Low Word Low Byte	Low Word High Byte	High Word Low Byte	High Word High Byte	
FLOAT32	IEEE-Format				
STRING	siehe Beispiele				
* vorzeichenrichtig aufgefüllt (00, bzw. FF.)					

5.2.3 Zugriff auf Geräteparameter

Wo finde ich die Geräteparameter?

Alle Geräteparameter werden über eine Parameternummer angesprochen. Das CANopen-Profil stellt neben den standardisierten Objekten zusätzlich einen Bereich für herstellerspezifische Einträge zur Verfügung. Dieser Bereich liegt zwischen 2000, und SFFF, Wenn Sie nun den Parameter 455 -MOT_FNOM (Nennfrequenz des Motors) des Gerätes lesen oder schreiben wollen, wird der Objektindex aus 2000, + Parameternummer (Hex) gebildet.

In unserem Beispiel: Index = 2000, + 107,

HINWEIS: Profilspezifische Parameter sind zwar im DRIVEMANAGER sichtbar, aber nur im Bereich 1000_{μ} ... (CiA-301 Objekte) / 6000_{μ} ... (CiA-402 Objekte) schreib-/lesbar. D. h. Parameter, die sowohl als Geräteparameter (Bereich $2xxx_{\mu}$), wie auch als Profilparameter (CiA-301 / CiA-402) angelegt sind, lassen sich nur über ihre Objektnummer (CiA-301 / CiA-402 Profil) lesen und schreiben.

Beispiel: Das Objekt 1000_h – Device Type existiert sowohl im CiA-301-Profil, wie auch als Geräteparameter mit der Parameternummer 2011. Via CANopen oder EtherCAT[®] wäre damit ein Zugriff auf zwei Wegen gleichzeitig möglich. Um den Zugriff eindeutig zu gestalten, ist der Lese-/Schreibzugriff für dieses Objekt nur über die profilspezifische Objektnummer 1000_h (gemäß CiA-301) möglich.

5.3 Beispiele zum SDO-Handling

Über die Receive SDO (COB-ID's: 600_h + Node-ID) kann auf die CANopen-Objekte und die Parameter des Antriebsreglers zugegriffen werden. In einem Datenübertragungsprotokoll können im Expedited-Mode maximal 4 Datenbytes übertragen werden. Damit können alle Geräteparameter, bis auf diejenigen vom Typ String, mit einem einzigen Übertragungsprotokoll beschrieben werden. Stringparameter können unter Nutzung des Multiplexed Domain Protokolls beschrieben werden.

Beispiel Lesezugriff auf String-Parameter (Parameter 3 DV_DeviceAliasName)

Hinweis:

- Alle Zahlenwerte sind hexadezimal

- Übertragen werden soll der String "X-Axis"

- Dieser Text ist im YukonDrive® Parameter 3 DV_DeviceAliasName eingetragen

Tabelle 28.1

TIME	ID	Direction	DLC	Byte O	Byte 1	Byte 2
18.992445	Тх	601	8	40	03	20
18.992972	Rx	581	8	41	03	20
35.514341	Тx	601	8	60	00	00
35.514594	Rx	581	8	00	58	2D
36.269620	Тx	601	8	70	00	00
36.270175	Rx	581	8	10	00	00
36.982385	Tx	601	8	60	00	00
36.982664	Rx	581	8	00	00	00
37.686447	Tx	601	8	70	00	00
37.686706	Rx	581	8	10	00	00
38.421344	Tx	601	8	60	00	00
38.421604	Rx	581	8	00	00	00
39.053526	Tx	601	8	70	00	00
39.053787	Rx	581	8	10	00	00
39.749081	Tx	601	8	60	00	00
39.749347	Rx	581	8	00	00	00
40.428981	Tx	601	8	70	00	00
40.429249	Rx	581	8	10	00	00
41.085839	Tx	601	8	60	00	00
41.086198	Rx	581	8	00	00	00
41.740755	Tx	601	8	70	00	00
41.741148	Rx	581	8	10	00	00
42.514034	Тx	601	8	60	00	00
42.514294	Rx	581	8	00	00	00
43.172512	Tx	601	8	70	00	00
43.172787	Rx	581	8	10	00	00
43.908571	Tx	601	8	60	00	00
43.908831	Rx	581	8	00	00	00
44.668466	Tx	601	8	70	00	00
44.668740	Rx	581	8	10	00	00
53.884044	Tx	601	8	60	00	00
53.884414	Rx	581	8	OB	00	00

Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Kommentar
00	00	00	00	00	Objekt 2003 _h (= Parameter 3) lesen
00	64	00	00	00	Antwort: 64 _h > 100Bytes sind zu übertragen
00	00	00	00	00	Anforderung Segment 1
41	78	69	73	00	Antwort Segment 1 - enthält "X-Axis"
00	00	00	00	00	Anforderung Segment 2
00	00	00	00	00	Antwort Segment 2
00	00	00	00	00	Anforderung Segment 3
00	00	00	00	00	Antwort Segment 3
00	00	00	00	00	Anforderung Segment 4
00	00	00	00	00	Antwort Segment 4
00	00	00	00	00	Anforderung Segment 5
00	00	00	00	00	Antwort Segment 5
00	00	00	00	00	Anforderung Segment 6
00	00	00	00	00	Antwort Segment 6
00	00	00	00	00	Anforderung Segment 7
00	00	00	00	00	Antwort Segment 7
00	00	00	00	00	Anforderung Segment 8
00	00	00	00	00	Antwort Segment 8
00	00	00	00	00	Anforderung Segment 9
00	00	00	00	00	Antwort Segment 9
00	00	00	00	00	Anforderung Segment 10
00	00	00	00	00	Antwort Segment 10
00	00	00	00	00	Anforderung Segment 11
00	00	00	00	00	Antwort Segment 11
00	00	00	00	00	Anforderung Segment 12
00	00	00	00	00	Antwort Segment 12
00	00	00	00	00	Anforderung Segment 13
00	00	00	00	00	Antwort Segment 13
00	00	00	00	00	Anforderung Segment 14
00	00	00	00	00	Antwort Segment 14
00	00	00	00	00	Anforderung Segment 15
00	00	00	00	00	Antwort Segment 15 - Keine weiteren Segmente

Tabelle 29.1

Übersetzung der übertragenen Werte (ASCII):

Der String "X-Axis" ist mit 6 Bytes so kurz, dass er komplett mit dem ersten Segmente übertragen werden kann. Die folgenden Segmente (der 100 Bytes des Parameters) enthalten daher nur noch Nullen.

Übertragene Bytes (HEX)	58	2D	41	78	69	73
Interpretation (ASCII)	Х	-	А	х	i	S

5.3.1 Parametersatz-Download

Der Download eines Parameterdatensatzes kann über SDO-Transfer oder Bedienoberfläche DRIVEMANAGER V5 und höher erfolgen. Alle herstellerspezifischen Geräteparameter sind zusätzlich über die Objekte 2000_h ... SFFF_h erreichbar.

Soll ein zusammenhängender gültiger Datensatz, also nicht nur Einzelparameter, vom CAN-Master auf das Gerät übertragen werden, ist Folgendes zu beachten:

Bei jeder Übertragung eines einzelnen Parameters prüft der Antriebsregler, ob der Parameter zu seinem bestehenden Datensatz passt. Bei der Prüfung des neuen Parameterwertes werden zum Teil auch bestehende Parameterwerte hinzugezogen. Dadurch besteht die Möglichkeit, dass der Antriebsregler einen Parameter ablehnt, obwohl er aus einem gültigen Parameterdatensatz stammt, weil dieser im Gerät noch nicht vollständig ist. Da durch einfachen Fehler-Reset die Fehlerursache unter Umständen nicht behoben wird, kann ein Zurücksetzen auf Werkseinstellung erforderlich sein.

Abhilfe:

Der Parameterdatensatz wird ohne Logikprüfung zum Antriebsregler übertragen. Am Ende des Downloads wird die Logikprüfung reaktiviert und der Antriebsregler prüft die übertragenen Parameter auf Plausibilität. Bei diesem Check werden Parametereinstellungen, die funktional nicht zusammen passen, als Fehler gemeldet.

Vorgehensweise zum Download eines kompletten Parameterdatensatzes:

1) Anmelden eines Downloads ohne Logikprüfung

Um die Logikprüfung zu deaktivieren und den Download eines Datensatzes anzumelden, wird der Parameter 11 Subindex 4 mit dem Wert 1 beschrieben.

2) Download der Parameterdaten zum Antriebsregler

In diesem Schritt werden die einzelnen Parameter des Datensatzes sequentiell zum Antrieb übertragen. Trotz abgeschalteter Logikprüfung sind noch Basis-Prüfmechanismen aktiv. Diese überwachen z. B. die Einhaltung der Parametergrenzen und werden bei deren Verletzung aktiv. D. h. wird eine Wertebereichsgrenze durch den Download eines Parameters verletzt, so wird dieses SDO-Protokoll direkt abgelehnt (Abort Message).

3) Download beenden und Plausibilitätsprüfung aktivieren

Sind alle Parameterdaten zum Antriebsregler übertragen, wird Parameter 11 Subindex 4 wieder auf den Wert 0 gesetzt. Dabei wird dann eine Logikprüfung der Parameter des Gerätes durchgeführt. Im Fehlerfall erhält der Anwender eine Emergency Message.

Hinweis: Der Download eines kompletten Parameterdatensatzes ist nur bei stillstehenden Systemen möglich. Sichern Sie den Antriebsregler gegen Einschalten für die Dauer des Downloads!

5.4 PDO-Transmission Types

Im Zusammenhang mit der PDO-Übertragung werden im CANopen-Profil CiA-301 verschiedene Transmission Types definiert. Der Transmission Type und die Ereignissteuerung können für alle unterstützten RxPDO's und TxPDO's getrennt eingestellt werden.

Der Antriebsregler unterstützt folgende Transmission Types:

Acyclic Synchronous Type No. 0,

Bedeutung: RxPDO's werden ausgewertet, nachdem ein gerätespezifisches Ereignis ausgelöst wurde und das nächste SYNC - Objekt empfangen wurde, anschließend wird das TxPDO versendet (ab Firmware Version 2.15-00).

Cyclic Synchronous Types No. 01, ... F0,

Bedeutung: Der Unterschied zum Transmission Type acyclic synchronous besteht darin, dass RxPDO's erst nach Empfang von 01, ... F0, Sync-Objekten ausgewertet bzw. TxPDO's alle 01, ... F0, Sync-Objekte gesendet werden.

Asynchronous Types No. FE, und FF,

Bedeutung: RxPDO's werden sofort nach Empfang ausgewertet, TxPDO's werden durch ein gerätespezifisches Ereignis versendet. Das Sync-Objekt spielt bei diesen Übertragungsarten keine Rolle.

Besonderheit Typ FF_b:

Bei diesem ist das Ereignis im zugehörigen Geräteprofil definiert.

Hinweis: Die Einstellung des gewünschen Transmission Types erfolgt über die entsprechenden CANopen-Objekte 1400, für RxPDOs und 1800, für TxPDOs.

5.5 Ereignisgesteuertes Versenden der TxPDO

Hinweis: Die Ereignissteuerung ist nur aktiv, wenn der jeweilige "Transmission Type" auf asynchron (FE_h oder FF_h) gestellt ist.

Funktion der Ereignissteuerung:

Als Ereignis für das Versenden einer TxPDO kann jede Änderung eines Bits innerhalb der TxPDO dienen. D.h. als Ereignis für das Versenden einer TxPDO kommen auch nur die gemappten Inhalte dieser TxPDO in Frage. Demnach ist es nicht möglich, eine TxPDO in Abhängigkeit der Änderungen von Inhalten einer anderen TxPDO zu versenden.

Beispiel:

Das Statuswort 6041, ist in TxPD01 gemappt. TxPD02 enthält die aktuelle Istposition. Eine Änderung des Statuswortes in TxPD01 kann also nicht als Event für das Versenden der TxPD02 herangezogen werden. Ist dies erforderlich, kann allerdings das Statuswort 6041, auch in TxPD02 gemappt werden.

Auswahl der Ereignisse:

Im YukonDrive[®] kann jedes Bit (bzw. dessen Änderung) einer TxPDO als Ereignis definiert werden. Per Default werden alle Bits (max. 64Bit = 8Byte) auf Änderungen überwacht und als Event ausgewertet. Es können allerdings mittels Masken einzelne Bits ausgeblendet und damit nicht mehr für die Eventgenerierung herangezogen werden. Dafür sind im Feldparameter 2007 Masken definiert, welche es ermöglichen, einzelne Bits der TxPDOs auszublenden. Für eine TxPDO gelten jeweils Subindizes. Jeder Subindex ist für 32Bit der TxPDO zuständig. So ist die Aufteilung wie folgt:

Parameter 2007 - COM_301_EvMask "Event mask for asynchronous transmit pdos"

Tabe	lle 32.1

Feldparameter 2007

Sub Id	Name	Value	Description	Туре
0	EvMsk_TxPdo1L	FFFFFFF	Event mask for TxPD01Byte 0-3	uint32
1	EvMsk_TxPdo1H	FFFFFFF	Event mask for TxPDO 1Byte 4-8	uint32
2	EvMsk_TxPdo2L	FFFFFFF	Event mask for TxPDO 2 Byte 0-3	uint32
3	EvMsk_TxPdo2H	FFFFFFF _h	Event mask for TxPDO 2 Byte 4-8	uint32
4	EvMsk_TxPdo3L	FFFFFFF	Event mask for TxPDO 3 Byte 0-3	uint32
5	EvMsk_TxPdo3H	FFFFFFF	Event mask for TxPDO 3 Byte 4-8	uint32
6	EvMsk_TxPdo4L	FFFFFFF	Event mask for TxPDO 4 Byte 0-3	uint32
7	EvMsk_TxPdo4H	FFFFFFF	Event mask for TxPDO 4 Byte 4-8	uint32

Beispiel zur Anwendung der Masken:

Um nur die unteren 16 Bit der TxPDO1 als Event zuzulassen, werden die Subindizes des Parameter 2007 wie folgt beschrieben:

- Subindex 0 (Event Maske TxPD01 Bytes 0 3) = 0000FFFF_h
- Subindex 1 (Event Maske TxPD01 Bytes 4 7) = 00000000_h

Hinweis: Ein zyklisches Versenden der Tx PDO's wird durch Einstellen einer Zykluszeit in ms in den Objekten 0x1800 (TxPD01) 0x1801(TxPD02), 0x1802 (TxPD03) und 0x1803 (TxPD04) Subindex 5 (event timer) aktiviert.

5.6 PDO-Mapping

5.6.1 Mapping allgemein

Das variable Mappen von Parametern ist beim YukonDrive[®] für alle 4 Rx- und TxPDOs möglich. Das Mapping funktioniert gemäß den Definitionen des CANopen-Kommunikationsprofil CiA-301.

Ein Großteil der gerätespezifischen Parameter sind Bestandteil der Manufacturer specific area (2001_h-5FFF_h) und können ebenfalls in den PDOs "gemappt" werden. Sie finden diese Parameter (Objekte) im EDS-File des Antriebs-reglers.

5.6.2 Mappinghinweise

Im Gegensatz zu früheren Geräten gibt es beim YukonDrive[®] kein vordefiniertes Mapping oder Mappingselektoren mehr. D. h. vor einer Kommunikation via PDO muss von der Steuerung das Mapping zum Antriebsregler geschrieben werden. Eine Übertragung des Datensatzes ist ebenso möglich.

Per Default sind die Mappingeinstellungen alle 0, d. h. die PDOs enthalten kein Mapping. Die Kommunikationseinstellungen (Mapping / Transmission Types etc.) können allerdings im Gerät gespeichert werden und unterliegen dem Datensatzhandling. D. h. sie müssen nicht jedes Mal neu geschrieben werden und können mit dem Datensatz transferiert werden.

Für das Mapping sind die folgenden Objekte relevant:

RxPDO's:

1600_h RxPD01 Mapping 1601_h RxPD02 Mapping 1602_h RxPD03 Mapping 1603_h RxPD04 Mapping

TxPDO's:

1A00_h TxPD01 Mapping 1A01_h TxPD02 Mapping 1A02_h TxPD03 Mapping 1A03_h TxPD04 Mapping

Hinweis: Es können maximal 8 Objekte pro PDO gemappt werden. In einer PDO können maximal 8 Byte gemappt werden.

Hinweis: Zu beachten ist, daß die PDO immer mit einer geraden Anzahl von Bytes belegt sein muss! Falls eine ungerade Anzahl benötigt wird, muss diese z. B. durch ein "Dummy Byte" aufgefüllt werden. Zu diesem Zweck steht der Parameter 2055 "COM_301_U8" (Objekt 0x2807_{*}) zur Verfügung.

5.7 Heartbeat-Funktion

Die Heartbeat Funktion nach CiA-301 (V4.01) wird unterstützt. Der YukonDrive® kann dabei nur als Heartbeat Producer eingesetzt werden, d.h. er sendet Heartbeat-Telegramme an die Steuerung. Zu diesem Zweck ist das Objekt 1017, Producer Heartbeat Time implementiert.

Als Wert für dieses Objekt wird ein Zeitwert (in ms) eingetragen. Der Zeitwert stellt das zyklische Intervall dar, in welchem der Antriebsregler seine Heartbeat Telegramme versendet.

Heartbeat Protocol

Das Heartbeat Protocol definiert einen ERROR CONTROL SERVICE ohne die Benutzung von REMOTE FRAMES. Ein HEARTBEAT PRODUCER sendet eine zyklische HEARTBEAT MESSAGE. Ein oder mehr HEARTBEAT CONSU-MER erhalten diese Nachricht. Das Verhältnis zwischen PRODUCER und CONSUMER ist über die im Folgenden beschriebenen Objekte konfigurierbar. Der HEARTBEAT CONSUMER überwacht den Erhalt des HEARTBEAT PROTOCOLS unter Berücksichtigung der eingestellten HEARTBEAT CONSUMER TIME.

Wenn das HEARTBEAT PROTOCOL nicht innerhalb der HEARTBEAT CONSUMER TIME eintrifft, wird ein HEART-BEAT Ereignis generiert. Das HEARTBEAT PROTOCOL startet direkt nach Eintrag der HEARTBEAT PRODUCER TIME. Wird das Gerät mit einer ungleich 0 eingestellten HEARTBEAT PRODUCER TIME eingeschaltet, startet das HEARTBEAT PROTOCOL mit dem Zustandsübergang INITIALISING -> PREOPERATIONAL. In diesem Fall wird die BOOTUP MESSAGE als erste HEARTBEAT MESSAGE angesehen.

Abbildung 34.1

Heartbeat Protocol r: reserved (always 0) s: the state of the Heartbeat Producer

- 0: BOOTUP
- 4: STOPPED

5: OPERATIONAL

127: PRE-OPERATIONAL

Hinweis: Die Funktionen NODE GUARDING und HEARTBEAT dürfen in einem Gerät nicht gleichzeitig genutzt werden. Wenn die HEARTBEAT PRODUCER TIME ungleich 0 ist, wird das HEARTBEAT PROTOCOL verwendet.

5.8 Telegrammausfall Überwachung

Mit dem YukonDrive[®] ist es möglich, die eintreffenden SYNC - Telegramme bzw. RxPDOs zu überwachen und nach einer konfigurierbaren Anzahl ausgefallener Telegramme eine Fehlermeldung auszulösen. Zur Konfiguration der Überwachung dienen die beiden in der folgenden Tabelle dargestellten Parameter:

Tabelle 35.1

Datentypen

Para - ID	Name	Beschreibung
2061	COM_CAN_Timeout_Type	Auswahl des zu überwachenden Signals: 0: SYNC, 1: RxPDO
2062	COM_CAN_Timeout_Value	Timeout - Zeit [ms] 0 = Überwachung inaktiv

Mit Hilfe des Parameters 2061 kann ausgewählt werden, ob die eintreffenden SYNC - Signale oder die RxPDOs überwacht werden sollen. Mit dem Parameter 2062 wird die Zeit in Millisekunden festgelegt, die nach dem Eintreffen des letzten konfigurierten Signals mindestens vergehen muss, bis ein Telegrammausfall erkannt wird. Die Telegrammausfall - Überwachung ist nur im NMT - Zustand "Operational" aktiv.

6. Parametrieren der Geräte EtherCAT®

6.1 Unterstützte EtherCAT®-Funktionalität

Im Folgenden finden Sie eine Übersicht der im YukonDrive® implementierten EtherCAT® Funktionalität, Grundlage für die folgende Beschreibung stellt nachfolgendes Bild dar. Es zeigt die Struktur von EtherCAT® in Anlehnung an das OSI 7 Schichtenmodell.

Der Physical Layer von EtherCAT® basiert auf der IEEE802.3 / 100 BaseTX Ethernetphysik. Darauf aufbauend folgt der EtherCAT® Data Link Layer (DL), welcher sich in Mailbox und Process Data aufteilt. Die folgende Schicht wird als AL (Application Layer) bezeichnet, in welcher sich u. a. die Dienste von CoE (CAN over EtherCAT®) und EoE (Ethernet over EtherCAT®) befinden.

Unter der Mailbox werden alle Dienste zusammengefasst, welche nicht zeitkritisch sind, d. h. deren Ausführung / Inhalte nicht zeitkritisch in Prozessdaten eingreifen. Die Mailbox wird als Servicedatenkanal genutzt und ermöglicht damit auch den Zugriff auf Antriebsparameter. Dies geschieht über den SDO (Service Daten Objekte) Kanal. Weiterhin stellt der Mailbox Dienst die Grundlage für die Dienste von EoE sowie das Fehlerhandling (Emergency Telegramme) dar. Die Prozessdaten (Process Data) sind in Anlehnung an CANopen (CiA-301) gestaltet. D. h. es erfolgt ein Mapping von Objekten in PDOs (Prozess Daten Objekten), welche zyklisch übertragen werden. Zu diesen Prozessdaten gehören beispielsweise zyklische Positions-, Drehzahl- oder Drehmoment- Soll- und Istwerte. Grundlage sowohl für SDO, wie auch für PDO-Zugriffe auf den Antrieb stellt immer das Objektverzeichnis dar, welches ebenfalls in Anlehnung an CANopen realisiert ist. Für den Anwender bedeutet dies, dass er sowohl via CANopen, als auch via EtherCAT[®] auf diese Objekte zugreifen kann.

Auf den Application Layer wiederum setzt im Falle des YukonDrive® das CiA-402 Geräteprofil auf. Informationen zu dieser Schicht entnehmen Sie bitte den Kapiteln "Implementierte CiA-402 Funktionalität" und "Betriebsarten CiA-402".
Im Folgenden finden Sie eine Übersicht der EtherCAT®-Funktionalität des YukonDrive®:

Process Data

- 4 RxPDOs
- 4 TxPDOs
- Übertragungslänge = max. 8 Byte pro PDO
- Variables Mapping gemäß CiA-301 (vgl. CANopen)

Achtung: Die PDO muss mit einer geraden Anzahl von Bytes belegt sein! Falls eine ungerade Anzahl benötigt wird, muss diese z. B. durch ein "Dummy Byte" aufgefüllt werden. Das Dummy Byte ist als Objekt 0x2807, einzutragen.

Zykluszeiten

- Übertragung zyklische Lagesollwerte mit max. 8 kHz (125µs)
- Übertragung zyklische Drehzahlsollwerte mit max. 8 kHz (125µs)
- Übertragung zyklische Drehmomentsollwerte mit max. 8 kHz (125µs)

Mailbox

Der YukonDrive® unterstützt das CAN over EtherCAT® (CoE) und das Ethernet over EtherCAT® (EoE) Protokoll. Die folgenden Funktionen / Dienste sind implementiert:

CoE

- SDO/Abort
- Initiate SDO Download
- Download SDO Segment
- Initiate SDO Upload
- Upload SDO Segment
- Abort SDO Transfer
- Alle Geräte Parameter sind über Objekt ID 2000H + x erreichbar

Hinweis: Profilspezifische Parameter sind zwar im DRIVEMANAGER sichtbar, aber nur im Bereich 1000_h... (CiA-301 Objekte) / 6000_h ... (CiA-402 Objekte) schreib-/lesbar. D. h. Parameter, die sowohl als Geräteparameter (Bereich 2xxx_h), wie auch als Profilparameter (CiA-301 / CiA-402) angelegt sind, lassen sich nur über ihre Objektnummer (CiA-301 / CiA-402 Profil) lesen und schreiben.

Beispiel

Das Objekt 1000_h – Device Type existiert sowohl im CiA-301 Profil, wie auch als Geräteparameter mit der Parameternummer 2011. Via CANopen oder EtherCAT[®] wäre damit ein Zugriff auf zwei Wegen gleichzeitig möglich. Um den Zugriff eindeutig zu gestalten, ist der Lese-/Schreibzugriff für dieses Objekt nur über die profilspezifische Objektnummer 1000_h (gemäß CiA-301) möglich.

Emergency

Der Emergency Dienst ist für die Übermittlung von Fehlermeldungen konzipiert. Im Gegensatz zu CANopen werden Emergency-Meldungen bei EtherCAT[®] nicht autark vom Slave abgesetzt, sondern durch den Master abgeholt.

Funktionalität im YukonDrive®:

Es werden ErrorCodes gemäß dem CiA-402-Geräteprofil unterstützt.
 Den Aufbau / Inhalt der Emergency-Meldung entnehmen Sie bitte dem Kapitel "Emergency Objects"

SDO Information Service

Der SDO Information Service ermöglicht es dem Master, das Objektverzeichnis des Slaves zu lesen. Auf diesem Weg kann der Master die unterstützten Objekte des Slaves mit den benötigten Zusatzinformationen (z. B. Datentyp / Zugriffsmöglichkeiten etc.) entnehmen. Der SDO Information Service stellt somit eine Alternative zum Einsatz des von CANopen bekannten EDS Files dar.

Funktionalität im YukonDrive®:

- Zugriff auf die Objektliste und Beschreibung
- Alternative zum Einbinden des EDS Files

FoF

Unter Ethernet over EtherCAT® fallen allgemein die Funktionen wie z. B. die Tunnelung von Standard Ethernet Frames in EtherCAT[®] Frames. Damit lassen sich z. B. Protokolle wie TCP/IP via EtherCAT[®] übertragen.

Implementierte Funktionalität im YukonDrive®:

- Initiate EoE request •
- Initiate EoE response
- EoE fragment request
- EoE fragment response

Distributed Clocks

Die Synchronisation bei EtherCAT® wird auf Basis der Distributed Clocks (Verteilte Uhren) realisiert. Jeder Slave besitzt eine eigene Uhr, welche durch einen Synchronisationsimpuls auf die anderen abgeglichen wird. Der Zeitgeber (Reference Clock), auf welchen sich die Teilnehmer synchronisieren, ist in einem Slave untergebracht.

Hinweise heim YukonDrive®:

- Die Konfiguration der Distributed Clocks erfolgt komplett in der Steuerung.
- Als Zykluszeiten müssen stets Vielfache von 125µs (Zeitbasis der Regelung) verwendet werden.

XML-File

Das XML-File dient dem Einbinden eines EtherCAT® Slaves in einen EtherCAT®-Master (Steuerung). Es enthält u. a. die Konfiguration (Mapping etc.) für die jeweiligen Betriebsarten.

HINWEISE beim YukonDrive®:

Das XML File wird mit der Firmware bereitgestellt. Das Einbinden dieses Files ist steuerungsspezifisch.

NMT (Network Management)

Das Netzwerkmanagement orientiert sich im Wesentlichen am Netzwerkmanagement von CANopen. Der Zustand Stopped (CANopen) wurde jedoch durch den Zustand Safe Operational (EtherCAT®) ersetzt.

Je nach Funktionsumfang der Steuerungssoftware können einzelne Zustandsübergänge automatisch oder über die PLC ausgeführt werden.

EtherCAT[®] State-Machine

Tabelle 39.1

Zustandsbeschreibung

Zustand	Beschreibung
Init	Initialisierung, das Gerät startet auf.
Pre-Operational	Das Gerät ist bereit zur Parametrierung. Mailbox Kommunikation ist möglich.
Safe-Operational	PDO Eingangsdaten (TxPDO Gerät) können gelesen werden. PDO Ausgangsdaten (RxPDO Gerät) werden ignoriert.
Operational	Zyklische E/A-Kommunikation PDO-Ausgangsdaten (RxPDO Gerät) werden bearbeitet

Tabelle 39.2

Zustandsübergänge

Übergänge	Aktionen
IP	Start Mailbox Communication
PI	Stop Mailbox Communication
PS	Start Input Update
SP	Stop Input Update

Tabelle 39.3

Zustandsübergänge

Übergänge	Aktionen
S0	Start Output Update
05	Stop Output Update
OP	Stop Output Update / Stop Input Update
SI	Stop Input Update / Stop Mailbox Communication
01	Stop Output Update / Stop Input Update / Stop Mailbox Communication

6.2 Konfiguration für den Betrieb an einer Steuerung

Die im vorigen Kapitel beschriebenen Dienste (z. B. PDO-Mapping etc.) werden alle durch die Steuerung (EtherCAT®-Master) bedient. Die kommunikationsspezifische Parametrierung des YukonDrive® erfolgt auf Basis des mitgelieferten XML-Files vom Master.

Die Parametrierung von Regelungseinstellungen, Normierung etc. kann auch über den DriveManager erfolgen. Alternativ sind alle Parameter auch über das Objektverzeichnis konfigurierbar.

7. Implementierte CiA-402-Funktionalität

Die in diesem Kapitel beschriebenen Funktionen beziehen sich auf die Ansteuerung in den Modes of Operation des CiA-402- Profils

1 - Profile Position Mode

8 - Cyclic Synchronous Position Mode (nur EtherCAT®)

- 3 Profile Velocity Mode
- 6 Homing Mode
- 7 Interpolated Position Mode

9 - Cyclic Synchronous Velocity Mode (nur EtherCAT[®]) 10 - Cyclic Synchronous Torque Mode (nur EtherCAT[®])

7.1 Gerätesteuerung und Zustandsmaschine

Die Steuerung des Antriebs erfolgt über die in der CiA-402 definierte DRIVECOM-Zustandsmaschine (s. CiA-402 10.1.1 Statemachine). Remote-Signal ist nicht vorgesehen.

7.1.1 Allgemeine Information

Durch die DEVICE CONTROL FUNCTION werden alle Funktionen des Controllers überwacht.

Diese Funktion ist unterteilt in:

- Device control of the state machine
- Operation mode function

Abbildung 40.1

Der Status des Controllers wird über das Steuerwort (6040), gesteuert. Der Status des Controllers wird im Statuswort (6041), angezeigt. Im REMOTE MODE wird der Controller direkt vom CANopen-Netzwerk durch PDO und SDO gesteuert.

Die Zustandsmaschine wird durch das Steuerwort gesteuert. Die Zustandsmaschine wird auch durch interne Ereignisse, wie z. B. Fehler beeinflusst.

Device controlling

7.1.2 Zustandsmaschine

Die Zustandsmaschine beschreibt den CONTROLLER STATUS und die möglichen Steuermöglichkeiten durch den Master. Ein Einzelstatus zeigt ein spezifisches internes oder externes Verhalten. Der Status eines Controllers schränkt zugleich die möglichen Steuerkommandos ein. Z. B. ist die Auslösung einer Punkt-zu-Punkt-Positionierung nur im Zustand OPERATION ENABLE möglich.

Zustände können sich durch das Steuerwort oder andere interne Ereignisse ändern. Der aktuelle Status wird im Statuswort angezeigt. Die Zustandsmaschine beschreibt den Zustand des Controllers in Bezug auf Anwenderkommandos und interne Fehlermeldungen.

7.1.3 Gerätezustände

Abbildung 41.1

State Machine

Die folgenden Gerätezustände sind möglich:

NOT READY TO SWITCH ON: (Nicht einschaltbereit)

- Nur Steuerspannung liegt am Antrieb an.
- Der Antrieb ist initialisiert oder führt einen Selbsttest durch.
- Falls vorhanden, greift die Bremse in diesem Zustand (bei Steuerung über den Antrieb).
- Die Antriebsfunktion ist abgeschaltet.

SWITCH ON DISABLED: (Einschaltsperre)

- Antriebsinitialisierung ist komplett.
- Antriebsparameter wurden gesetzt.
- Antriebsparameter wurden geändert.
- Gerät steht nicht unter Spannung (aus Sicherheitsgründen).
- · Die Antriebsfunktion ist abgeschaltet.
- "STO (Safe Torque Off)" und/oder ENPO nicht aktiv

READY TO SWITCH ON: (Einschaltbereit)

- · Gerät ist unter Spannung.
- Antriebsparameter wurden geändert.
- Antriebsfunktion ist abgeschaltet.

SWITCHED ON: (Eingeschaltet)

- Gerät steht unter Spannung.
- POWER AMPLIFIER ist betriebsbereit.
- Antriebsparameter wurden geändert.
- Die Antriebsfunktion ist abgeschaltet.

OPERATION ENABLE: (Technologie bereit)

- Keine Fehler wurden erkannt.
- Antriebsfunktion ist freigegeben und Motor steht unter Spannung.
- Antriebsparameter wurden geändert.
- (Bezieht sich auf Standardanwendung des Antriebs.)

QUICK STOP ACTIVE: (Schnellhalt aktiv)

- Antriebsparameter wurden geändert.
- QUICK-STOP Funktion wird ausgeführt.
- · Antriebsfunktion ist freigegeben und Motor steht unter Spannung.
- Wenn der QUICK STOP OPTION CODE auf 5 gesetzt ist (im Status QUICK STOP ACTIVE bleiben), können Sie den Status QUICK STOP ACTIVE nicht verlassen, Sie können aber zum Status
- OPERATION ENABLE mit dem Befehl ENABLE OPERATION wechseln.

FAULT REACTION ACTIVE: (Störungsreaktion aktiv)

- Antriebsparameter wurden geändert.
- Ein Fehler ist aufgetreten.
- Die QUICK STOP-Funktion wurde ausgeführt.
- Die Antriebsfunktion ist freigegeben und Motor steht unter Spannung.

FAULT: (Störung)

- Antriebsparameter wurden geändert.
- Ein Fehler ist aufgetreten, die Fehlerreaktion wurde ausgeführt.
- Spannungsab- und zuschaltung hängt von der Applikation ab.
- · Die Antriebsfunktion ist abgeschaltet.

Bitkombinationen der DRIVECOM-Zustandsmaschine

Gerätesteuerbefehle

Folgende Bitkombinationen der Steuerbits 0...3 und 7 des Steuerworts bilden die Gerätesteuerbefehle für die Zustandsübergänge der Zustandsmaschine:

Tabelle 43.1 Bitkombination						
Pofehl	Steuerwort Bit					Ühaasäass
Dereni	7	з	2	1	O	Opergange
STILLSETZEN	0	х	1	1	0	2, 6, 8
EINSCHALTEN	0	х	1	1	1	3
SPANNUNG SPERREN	0	х	х	0	1	7, 9, 10, 12
SCHNELLHALT	0	х	0	1	х	11
BETRIEB SPERREN	0	0	1	1	1	5
BETRIEB FREIGEBEN	0	1	1	1	1	4
RESET STÖRUNG	0 > 1	x	x	х	х	15

Gerätestatus Tabelle

Tabelle 43.2 Bitkombinationen der DRIVECOM-Zustandsmaschine Statuswort Bit Zustand з NICHT EINSCHALTBEREIT Х EINSCHALTSPERRE Х EINSCHALTBEREIT EINGESCHALTET BETRIEB FREIGEGEBEN STÖRUNG Х STÖRUNGSREAKTION AKTIV Х SCHNELLHALT AKTIV

7.2 Option codes

Die Geräte unterstützen Option codes für vier verschiedene Möglichkeiten den Antrieb stillzusetzen.

Diese vier Möglichkeiten sind :

- Funktion HALT Unterbrechung einer laufenden Bewegung
- Funktion Reglersperre Stoppen der Bewegung durch Wegnahme der Reglerfreigabe (Software !)
- Funktion Schnellhalt Stoppen der Bewegung durch Auslösen von Schnellhalt
- Funktion Fehlerreaktion Stoppen der Bewegung im Fehlerfall

Für alle Varianten wird mittels des Option codes die gewünschte Gerätereaktion parametriert.

Tabelle 44.1

Option codes

CANopen	Funktion	Unterstützte Einstellungen
Objekt 605Ah	Quick stop option code	0 bis 8
Objekt 605Bh	Shutdown option code	-1 bis 1
Objekt 605Ch	Disable operation option code	0 und 1
Objekt 605Dh	Halt Option Code	0 bis 4
Objekt 605Eh	Fault Reaction Option Code	O bis 4

Die Objekte sind als Standard-Parameter der Geräte Bestandteil des Datensatzes.

Hinweis: Die Schnellhaltrampe wird immer mit dem für die Fahrprofilrampen eingestellten Verschliff durchgeführt. Die Fehlerstoprampe wird, auch bei programmiertem Verschliff, immer ohne Verschliff ausgeführt.

7.3 Device Control Objects

In der folgenden Tabelle sind die implementierten Objekte zur Steuerung des Antriebs aufgelistet.

Device Control Objects

Tabelle 45.1			Device Contr	ol Objects
Object No.	Object Name	Object Code	Туре	Attr.
0x6040	Steuerwort	VAR	Unsigned16	rw
0x6041	Statusword	VAR	Unsigned16	ro
0x605A	Quick_Stop_Option_Code 0: disable drive function 1: slow down on slow down ramp 2: slow down on quick stop ramp 3: slow down on the current limit 4: slow down on the voltage limit 5: slow down on slow down ramp and stay in QUICK STOP 6: slow down on quick stop ramp and stay in QUICK STOP 7: slow down on the current limit and stay in QUICK STOP 8: slow down on the current limit and stay in QUICK STOP 8: slow down on the voltage limit and stay in QUICK STOP	VAR	Integer16	rw
0x605B	Shutdown_Option_Code -1: Reaktion gemäß Quick_Stop_Option_Code 0: Disable Drive Function 1: slow down with slow down ramp; disable of the drive	VAR	Integer16	rw
0x605C	Disable_Operation_Option_Code 0: Disable Drive Function 1: Slow down with slow down ramp and then disabling of the Drive Function	VAR	Integer16	rw
0x605D	Halt_Option_Code 0: disable drive, motor is free to rotate 1: slow down on slow down ramp 2: slow down on quick stop ramp 3: slow down on the current limit 4: slow down on the voltage limit	VAR	Integer16	rw
0x605E	Fault_Reaction_Option_Code 0: disable drive, motor is free to rotate 1: slow down on slow down ramp 2: slow down on quick stop ramp 3: slow down on the current limit 4: slow down on the voltage limit	VAR	Integer16	rw
0x6060	Modes_Of_Operation 1: profile position mode 3: profile velocity mode 6: homing mode 7: Interpolated position mode 8: Cyclic sync position mode (NUR EtherCAT*) 9: Cyclic sync velocity mode (NUR EtherCAT*) 10: Cyclic sync torque mode (NUR EtherCAT*)	VAR	Integer8	wo
0x6061	Modes_Of_Operation_Display siehe 0x6060	VAR	Integer8	ro

7.4 Einheiten und Normierungen, Factor Group

Die Bedienoberfläche DRIVEMANAGER bietet einen Normierungsassistenten, mit dem auf einfache Weise die mechanischen und elektrischen Zusammenhänge für die Normierung von Einheiten der für die Regelung notwendigen Größen eingestellt werden können. Dieser Assistent setzt die Anwendungsgrößen auf die Darstellung der Parameter aus der CiA-402-Factor Group um. Die Parameter aus der Factor Group sind folgend aufgeführt und können vom Anwender auch direkt eingestellt werden.

Dabei müssen Zusammenhänge extern berechnet und die Endergebnisse in den jeweiligen Factor Group Parameter eingetragen werden.

Im Allgemeinen ist der Weg, die Parametereinstellungen durch den Normierungsassistenten berechnen zu lassen, der einfachste.

HINWEIS: Die folgenden Objekte werden direkt im YukonDrive® berechnet:

- Position Factor
- Velocity Encoder Factor
- Acceleration Factor

Grundlage für die Berechnung sind die in den Formeln hinterlegten Objekte (z. B. feed constant, gear ratio etc.). Es ist zwar möglich diese Größen im DRIVEMANAGER oder via Bus zu verändern, jedoch werden sie durch die interne Berechnung im Rahmen der Regelungsinitialisierung überschrieben.

HINWEIS: In diesem Kapitel finden Sie eine Übersicht der Objekte aus der Factor Group sowie die zugrundeliegenden Formeln für die Berechnung. Praxisbeispiele für die Durchführung der Normierung finden Sie im Anwendungshandbuch.

Factor Group gemäß CiA-402:

Tabelle 46.1

Object No.	Object Name	Object Code	Туре	Attr.
0x607E	Polarity	VAR	Unsigned8	rw
0x6089	Position_Notation_Index	VAR	Integer8	rw
0x608A	Position_Dimension_Index Nur Anzeige für Normierungsblock	VAR	Unsigned8	rw
0x608B	Velocity_Notation_Index	VAR	Integer8	rw
0x608C	Velocity_Dimension_Index Nur Anzeige für Normierungsblock	VAR	Unsigned8	rw
0x608D	Acceleration_Notation_Index	VAR	Integer8	rw
0x608E	Acceleration_Dimension_Index Nur Anzeige für Normierungsblock	VAR	Unsigned8	rw
0x608F	Position_Encoder_Resolution	VAR	Unsigned8	rw
0x6090	Velocity_Encoder_Resolution	ARRAY	Unsigned32	rw
0x6091	Gear_Ratio	ARRAY	Unsigned32	rw
0x6092	Feed_Constant	ARRAY	Unsigned32	rw
0x6093	Position_Factor	ARRAY	Unsigned32	rw
0x6094	Velocity_Encoder_Factor	ARRAY	Unsigned32	rw
0x6097	Acceleration_Factor	ARRAY	Unsigned32	rw

Factor Group

Die Objekte der Factor Group können unabhängig vom Normierungsassistenten des DRIVEMANAGERS durch den Anwender berechnet und direkt eingetragen werden. Die entsprechenden Drehgebereinstellungen sind jedoch unbedingt vorzunehmen.

Berechnungszusammenhänge Factor Group Parameter

Objekt 608F,: Position Encoder Resolution

Die Position Encoder Resolution definiert das Verhältnis zwischen Drehgeber und Motorumdrehungen.

Objekt 6090,: Velocity Encoder Resolution

Die Velocity Encoder Resolution definiert das Verhältnis zwischen Drehgeber Inkr./s pro Motorumdrehungen / s

Velocity Encoder Resolution -	Drehgebe	r <u>Inkremente</u> Sekunde
	Motor	Umdrehungen Sekunde

Objekt 6091,: Gear Ratio

Mit dem Gear Ratio wird das Übersetzungsverhältnis eines Getriebe am Motor abgebildet.

Es ist wie folgt definiert:

Gear Ratio = Umdrehungen der Motorwelle Umdrehungen der Antriebswelle

Objekt 6092,: Feed Constant

Mit der Feed[°] Constant wird der Vorschub in Positionseinheiten je Umdrehung der Antriebswelle definiert. Hierzu gehört auch das Getriebe, sofern vorhanden.

```
feed constant = 
Umdrehungen der Antriebswelle
```

Objekt 6093,: Position Factor

Mit dem Position Factor wird die gewünschte Position (in Positionseinheiten) in das interne Format (in Inkrementen) umgewandelt.

Position Factor = Position Encoder Resolution • Getriebeübersetzung Vorschubkonstante

Objekt 6094 .: Velocity Encoder Factor

Mit dem Velocity Encoder Factor wird die gewünschte Geschwindigkeit (in Geschwindigkeitseinheiten) in das interne Format (in Inkrementen) umgewandelt.

elocity Encoder Resolution • Getriebeüber	rsetzung • Positionseinheit • F Geschwindigkeit (Notationsindex)
Vorschubkonstante • Geschwindigk	eitseinheit • Sekunde • F Positon (Notationsindex)
n Beispiel für F Geschwindigkeit (Notationsinder) Oder F Positon (Notetionsinder)
descriwindigkeit (Notationsindex	(Notationshidex)
äre 10 ² oder 10 ⁻⁶	

Objekt 6097,: Acceleration Factor

Mit dem Acceleration Factor wird die Beschleunigung (in Beschleunigungseinheiten/s) in das interne Format (in Inkrementen/s) umgewandelt.

Acceleration Factor =	Geschwindigkeitseinheit • Velocity Encoder Factor	
	Beschleunigungseinheit • Sekunde	

Objekt 607E_h: Polarity

Der Positionssollwert und der Positionsistwert werden abhängig vom Wert des Polarity Flags mit 1 oder -1 multipliziert.

Gleiches gilt für den Drehzahlsoll- und Drehzahlistwert.

Beachten Sie die Bedienung des Objekts Polarity gemäß CiA-402 V2.0.

Bits O bis 5 = Reserviert (don't use) Bit 6 = Velocity Polarity Bit 7 = Position Polarity

Hinweis: Änderungen an Polarity wirken wie bei den anderen Objekten der Factor Group nur im ausgeschalteten Zustand der Regelung.

7.5 E/A-Abbild

Über verschiedene Objekte kann der Status der Eingänge und Ausgänge des Antriebsreglers entnommen werden. Die folgenden Objekte bzw. Parameter sind implementiert:

7.5.1 Objekt 60FD_b – Digitale Eingänge

Diese Objekt ist konform zum Geräteprofil CiA-402 implementiert. Es ermöglicht im Profil definierte Funktionen der digitalen Eingänge auszuwerten. D. h. es bietet kein Eingangsabbild der vorhandenen physikalischen Eingänge, sondern ein funktionsbezogenes Eingangsabbild.

So ist es unabhängig, an welchem Eingang z. B. ein Endschalter angebunden ist. Innerhalb des Objekts ist das Bit, welches den Zustand des Endschalters definiert, fest definiert.

Tabelle 49.1

Objekt 60FD, - Digitale Eingänge

Bit	Belegung
0	Negative limit switch
1	Positive limit switch
2	Home switch
3 bis 15	Reserviert
16 bis 31	Herstellerspezifisch (z. Zt. nicht implementiert)
18	Status Anforderung Sicherer Halt
19	ENPO

7.5.2 Objekt 2079 - MPRO_INPUT_STATE

Dieses herstellerspezifische Objekt liefert ein Eingangsabbild aller digitalen Eingänge des YukonDrive[®]. Das Objekt ist mappbar und somit per PDO übertragbar.

Die Belegung ist wie folgt realisiert:

Tabelle 50.1	Objekt 2079 _h - MPRO_INPUT_STATE
Bit	Belegung
0	Zustand Eingang ENPO
1	Zustand Eingang ISD00
2	Zustand Eingang ISD01
3	Zustand Eingang ISD02
4	Zustand Eingang ISD03
5	Zustand Eingang ISD04
6	Zustand Eingang ISD05
7	Zustand Eingang ISDSH
8 bis 15	Reserviert
16	Zustand Eingang ISD06
17	Reserviert
18	Zustand Eingang ISA00
19	Zustand Eingang ISA01
30 bis 31	Reserviert

7.5.3 Objekt 208F, - MRPO_OUTPUT_STATE

Dieses herstellerspezifische Objekt liefert ein Ausgangsabbild aller digitalen Ausgänge des YukonDrive[®]. Das Objekt ist mappbar und somit per PDO übertragbar.

Die Belegung ist wie folgt realisiert:

Tabelle 50.2	Objekt 208F _h - MPRO_OUTPUT_STATE
Bit	Belegung
0	Zustand Ausgang OSD00
1	Zustand Ausgang OSD01
2	Zustand Ausgang OSD02
3 bis 5	Reserviert
6	Zustand Ausgang Motorbremse
7	Zustand Relais-Ausgang
8 bis 14	Reserviert
15	Zustand Relais-Ausgang "STO (Safe Torque Off)"

7.5.4 Digitale Ausgänge via Feldbus setzen

Um die digitalen Ausgänge OSDOO – OSDO2 über den Bus setzen bzw. rücksetzen zu können, müssen die Ausgangsselektoren "MPRO_Output_FS_OSDxx" (Parameter 122 - 124) für den Zugriff über Feldbus konfiguriert werden. Die beiden dafür vorgesehenen Einstellmöglichkeiten sind für alle drei digitalen Ausgänge (OSDOO, OSDO1, OSDO2) gültig und in der folgenden Tabelle dargestellt.

Tabelle 51.1 Ei		ung der Parameter "MPRO_Output_FS_OSDxx" (122 - 124)
	Einstellung	Beschreibung
(3	9) Output set via communication option in 1ms cycle	Setzen des Ausgangs über Kommunikationsoption, Aktualisie- rung im 1ms Zyklus
(4	40) Output set via communication option in NC cycle	Setzen des Ausgangs über Kommunikationsoption, Aktualisie- rung im Regelungszyklus (62,5 µs)

7.5.5 Objekt 60FE,, digitale Ausgänge:

Bei Einstellung des herstellerspezifische Parameter "Funktionsselektor für digitalen Ausgang" = CAN (13) kann der zugehörige Ausgang über dieses Objekt beeinflusst werden.

Tabelle 51.2

Bitbelegung des Objektes 60FE _h	Bit
OSDOO	16
OSD01	17
05D02	18
OSD03	25
OSD04	26
OSD05	27

8. Betriebsarten

8.1 CiA-402 kompatible Betriebsarten

Die Geräte der YukonDrive® Baureihe unterstützen die CiA-402-Betriebsarten

- Profile position mode
- Profile velocity mode Homing mode

- Cyclic Synchronous Position Mode (nur EtherCAT®)
 Cyclic Synchronous Velocity Mode (nur EtherCAT®)
- Cyclic Synchronous Torque Mode (nur EtherCAT®)
- Interpolated Position Mode

Die Umschaltung der Betriebsart erfolgt über das CANopen Objekt 6060, -Modes of Operation. Diese Umschaltune ist im Zustand "Operation enable" (Motor bestromt) möglich. Die aktuelle Betriebsart wird im CANopen

Objekt 6061,-Modes of Operation display angezeigt.

8.1.1 Parametrierung des YukonDrive® für Ansteuerung via CiA-402

Für die Ansteuerung über CANopen (bzw. CoE - EtherCAT[®]) gemäß CiA-402 Profil müssen folgende Parameter im Gerät eingestellt werden:

Tabelle 52.1	Parametrierung des YukonDrive®		
Nr.	Name	Funktion	Einstellung
159	MPRO_CTRL_SEL	Steuerortselektor	CiA-402
165	PRO_REF_SEL	Sollwertselektor	CiA-402

Man findet diese Parameter unter "Motion Profile" --> "Basic Settings"

Wird der Antrieb in einer Betriebsart angesteuert, bei welcher der interne Profilgenerator inaktiv ist und zyklisch Sollwerte übertragen werden (z. B. Cyclic Synchronous Position Mode), muss die Interpolationszeit parametriert werden.

Tabelle 52.2

Parametrierung des YukonDrive®

Nr.	Name	Funktion
306	CON_IpRefTs	Zykluszeit der Sollwerte im IP Mode

Die Interpolationszeit CON_IpRefTs stellt die Zykluszeit dar, in welcher Sollwerte von einer überlagerten Steuerung erwartet werden.

8.1.2 Steuerwort CiA-402

Objekt 6040,-Steuerwort Das Objekt wird auch im Parameter 2208-MP_Controlword abgebildet.

Das Steuerwort beinhaltet Bits für:

- die Zustandssteuerung
- die Steuerung der Betriebsarten
- die herstellerspezifischen Optionen.

Die Bits des Steuerworts sind wie folgt definiert:

Tabelle 52.3

Steuerwort CiA-402

15 11	10 9	8	7	6 4	3	2	1	0
Manufacturer specific	reserved	Halt	Fault Reset	Operation mode specific	Enable operation	Quick stop	Enable voltage	Switch on
0	0	0	М	0	М	М	м	М
MSB O - Optional			M - Mai	ndatory				LSB

Bits 0 ... 3 und 7:

DEVICE CONTROL COMMANDS werden durch das folgende Schema im Steuerwort getriggert:

Command		Transitions				
Command	Fault reset	Enable operation	Quick-Stop	Enable voltage	Switch on	Transitions
Shutdown	0	х	1	1	0	2, 6, 8
Switch on	0	0	1	1	1	3*
Switch on	0	1	1	1	1	3**
Disable voltage	0	х	х	0	х	7, 9, 10, 12
Quick Stop	0	х	0	1	х	7, 10, 11
Disable ope- ration	0	0	1	1	1	5
Enable operation	0	1	1	1	1	4, 16
Fault reset	F	Х	x	х	x	15

Tabelle 53.1

Gerätesteuerbefehle

bits marked X are irrelevant,

 * ... In the state SWITCHED ON the drive executes the functionality of this state.,

 ** .. It exists no functionality in the state SWITCHED ON. The drive does not do anything in this

state.

Bits 4 ... 6 und 8:

Die Bits 4 ... 6 und 8 werden je nach aktiver Betriebsart (Objekt "Modes of Operation Display") unterschiedlich interpretiert.

Tabelle 53.2

Betriebsartspezifische Bits im Steuerwort

Operation Mode							
Bit	Profile position mode	Profile velocity mode	Homingmode	Interpolated position mode	Cyclic synchronous position mode (EtherCAT®)	Cyclic synchronous velocity mode (EtherCAT®)	Cyclic synchronous torque mode (EtherCAT®)
4	New setpoint	reserved	Homing operation start	Enable IP mode	reserved	reserved	reserved
5	Change set immediately	reserved	reserved	reserved	reserved	reserved	reserved
6	abs/rel	reserved	reserved	reserved	reserved	reserved	reserved
8	Halt	Halt	Halt	Halt	reserved	reserved	reserved

Die Verwendung der spezifischen Bits ist in den Kapiteln der Betriebsarten näher erläutert.

Bits 7 und 11 ... 15:

Tabelle 54.1

Bits im Statuswort

Bit	Name	Value	Description
7	Fault Reset	0→1	Fault Reset
11			No Function
			No Function
15			No Function

8.1.3 Statuswort CiA-402

Objekt 6041,-Statuswort

Der Inhalt des Objektes wird auch im Parameter 2209 - MP_Statusword abgebildet. Das Statuswort zeigt den aktuellen Status des Antriebs.

Es beinhaltet die folgenden Bits für:

- den aktuellen Gerätezustand,
- den Zustand der Betriebsart und
- die herstellerspezifischen Optionen.

Tabelle 54.2

Bits im Statuswort

Bit	Description	M/0
0	Ready to switch on	М
1	Switched on	М
2	Operation enabled	М
3	Fault	М
4	Voltage enabled	м
5	Quick stop	М
6	Switch on disabled	М
7	Warning	0
8	Manufacturer specific	0
9	Remote	М
10	Target reached	м
11	Internal Limit active	М
12 - 13	Operation mode specific	0
14 - 15	Manufacturer specific	0

Bits 0 ... 3, 5 und 6:

Diese Bits zeigen den Status des Controllers.

Tabelle 54.3

Bits für den Gerätezustand im Statuswort

Value (binary)	State
xxxx xxxx x0xx 0000	Not ready to switch on
xxxx xxxx x1xx 0000	Switch on disabled
xxxx xxxx x01x 0001	Ready to switch on
xxxx xxxx x01x 0011	Switched on
xxxx xxxx x01x 0111	Operation enabled
xxxx xxxx x00x 0111	Quick stop active
xxxx xxxx x0xx 1111	Fault reaction active
xxxx xxxx x0xx 1000	Fault

Bit 4: Voltage enabled

Leistungsversorgung liegt an.

Bit 5: Quickstop

Im Zustand LOW zeigt dieses Bit an, dass der Controller ein "quickstop" ausführt. Bits 0, 1 und 2 des Statuswort sind auf 1 gesetzt, wenn der Antrieb betriebsbereit ist. Die anderen Bits zeigen weitere Zustände des Antriebs an, wie z.B. Ausführen eines "quickstop".

Im Fehlerfall wird das Bit FAULT gesetzt.

Bit 7: Warning

Warnungen, wie z. B. Temperaturgrenzen, werden im Bit 7 angezeigt. Bei Warnungen ändert sich der Gerätezustand nicht. Nähere Informationen zur anstehenden Warnung können dem FAULT CODE entnommen werden.

Bit 8: Herstellerspezifisch

z. Zt. nicht belegt.

Bit 9: Remote

Z. Zt. nicht belegt.

Bit 10: Target Reached

Das Bit wird automatisch gesetzt wenn ein Sollwert (SETPOINT) erreicht ist. Der Sollwert hängt vom OPERATING MODE ab. Die Änderung des Sollwerts durch den Master ändert dieses Bit. Bei "quickstop" OPTION CODE 5, 6, 7 oder 8 wird dieses Bit nach Beendigung des "quickstop" gesetzt. Bei HALT-Anforderung wird im Stillstand dieses Bit auch gesetzt.

Bit 11: Internal Limit active

Dieses Bit wird beim Erreichen von internen Begrenzungen gesetzt. Dieses Bit ist OPERATION MODE abhängig.

Bit 12 und 13:

Diese Bits sind OPERATION MODE abhängig - siehe dazu folgende Kapitel.

Die folgende Tabelle gibt einen Überblick:

Tabelle 55.1

Betriebsartspezifische Bits im Statuswort

Operation Mode							
Bit	Profile position mode	Profile velocity mode	Homingmode	Interpolated position mode	Cyclic synchronous position mode (EtherCAT®)	Cyclic synchronous velocity mode (EtherCAT®)	Cyclic synchronous torque mode (EtherCAT®)
12	Set-point acknowledge	Speed	Homing attained	IP mode active	Target position ignored	Target velocity ignored	Target torque ignored
13	Following error	Max slippage error	Homing error	reserved	Following error	reserved	reserved

Bit 14 und 15:

Diese Bits sind herstellerspezifisch implementiert, sie werden bei den jeweiligen Betriebsarten erläutert.

8.2 Betriebsarten mit Profilgenerierung im Antrieb

Bei den Betriebsarten mit Profilgenerierung im Antrieb übergibt die Steuerung dem Antriebsregler lediglich eine Zielposition bzw. Geschwindigkeit für die Bewegung. Wie der Antriebsregler diese Position / Geschwindigkeit erreicht, also wie das Fahrprofil (z. B. Trapez, Dreieck / Steilheit der Rampen etc.) aussieht, wird komplett vom Antriebsregler bestimmt und ausgeführt.

8.2.1 Profile Velocity Mode

Diese Betriebsart (Mode of Operation = 3) dient der Ansteuerung des Gerätes mit einem Geschwindigkeitssollwert gemäß CiA-402-Profil. Der Antrieb befindet sich bei dieser Betriebsart in Drehzahlregelung. Die Einheiten, der Sollwert und die Rampengrößen ergeben sich aus den Einstellungen der Factor Group. Siehe dazu auch Kapitel 7.4 "Einheiten und Normierungen".

Das Gerät unterstützt folgende Objekte für diese Betriebsart:

Tabelle 56.1		Profile	Velocity Mode
Object No.	Object Name	Object Code	Туре
0x606C	Velocity actual value	VAR	Int32
0x60FF	Target velocity	VAR	Int32
0x6094	Velocity encoder factor	ARRAY	Int32
0x6083	Profile acceleration	VAR	Int32
0x6084	Profile deceleration	VAR	Int32
0x6085	Quick Stop deceleration	VAR	UInt32
0x607E	Polarity	VAR	UInt8

Hinweis: Außer den in der Tabelle aufgeführten Objekten wird im Profile Velocity Mode auch das Objekt 0x6064 "Positon Actual Value" zyklisch aktualisiert.

Abbildung 57.1

Struktur Profile Velocity Mode

Betriebsartabhängige Bits im Steuerwort

Tabelle 57.2

Profile Velocity Mode Bits im Statuswort

Object No.	Object Name	Object Code	Туре
0	Halt	0	Execute the motion
0	nait	1	Stop axle

8.2.2 Homing Mode

Diese Betriebsart (Mode of Operation = 6) dient der Durchführung einer Referenzierung einer lagegeregelten Achse. Dabei führt der Antrieb eine Bewegung gemäß des programmierten Referenzfahrttyps (homing method) aus.

Hinweis: Eine steuerungsgeführte Referenzierung des Antriebs ist mit Hilfe der Touch Probe Funktion möglich. Siehe dazu Kapitel 10.1.

Die unterschiedlichen Referenzfahrttypen unterscheiden sich in der Einbeziehung von Hardwareendschalter, Referenznocken und Nullimpuls des Gebersystems. Dabei ist zu berücksichtigen, dass bei Endschalter- und Referenznockenfunktionalität entsprechende digitale Eingänge auf diese Funktion hin zu parametrieren sind:

- Endschalterfunktion
- LCW rechter HW-Endschalter
- LCCW linker HW-Endschalter
- HOMSW Referenznocken

Folgende Objekte werden für diese Betriebsart vom Gerät unterstützt:

Tabelle 58.1

			-		
Object No.	Object Name	Object Code	Туре	Attr.	
0x607C	Home_Offset	VAR	Integer32	rw	
0x6098	Homing_Method	VAR	Integer8	rw	
0x6099	Homing_Speeds *	ARRAY	Unsigned32	rw	
0x609A	Homing_Acceleration	VAR	Unsigned32	rw	
* 0x6099. 0x6099.	* 0x6099.01 - Eilganggeschwindigkeit 0x6099.02 - Schleichganggeschwindigkeit				

Abbildung 58.2

Homing Function

Homing Mode

Der YukonDrive[®] unterstützt alle 35 in der CiA-402 definierten Referenzfahrttypen. Die einzelnen Referenzfahrttypen sind bezüglich ihrer Funktion und Bewegungsablauf im Anwendungshandbuch YukonDrive[®] beschrieben.

Home Offset:

Das Objekt HOME OFFSET ist die Differenz zwischen Position 0 der Applikation und der während der Referenzierung gefundenen HOME POSITION. Diese wird in Positionseinheiten dargestellt. Am Ende einer Referenzierung wird der HOME OFFSET zur gefundenen HOME POSITION addiert. Alle nachfolgenden absoluten Positionierungen beziehen sich auf diese neue Nullposition.

Eine Änderung des Referenzfahrttyps und der zugehörigen Eigenschaften ist auf zwei Arten möglich. Die Referenzfahrt kann entweder über den DRIVEMANAGER oder via CAN umgestellt werden. Bei einer Parametrierung via CANopen können direkt die Objekte des Homing mode angesprochen werden. Z. B. kann für eine Änderung des Referenzfahrttyps das Objekt 0x6098, verändert werden.

Betriebsartspezifische Bits im Steuerwort

Bit 4 - HOMING OPERATION START Bit 8 - HALT

Tabelle 59.1

Homing Mode Bits im Steuerwort

Bit	Name	Value	Description
		0	Homing mode inactive
4 Homin operation	Homing	0 →1	Start homing mode
	operation start	1	Homing mode active
		$1 \rightarrow 0$	Interrupt homing mode
8		0	Execute the instructions of bit 4
	Halt	1	Stop axle with Profile deceleration

Betriebsartspezifische Bits im Statuswort

Bit 10 - TARGET REACHED Bit 12 - HOMING ATTAINED Bit 13 - HOMING ERROR Bit 14 - ROT_0

Tabelle 59.2

Homing Mode Bits im Statuswort

Bit	Name	Value	Description
		0	Halt = 0: Home position not reached Halt = 1: Axle decelerates
10	Target reactien	1	Halt = 0: Home position reached Halt = 1: Axle has velocity 0
12	Homing	0	Homing mode not yet completed
12 atta	attained	1	Homing mode carried out successfully
		0	No homing error
13	Homing	1	Homing error occurred;
15	error		Homing mode carried out not successfully
			The error cause is found by reading the error code
			Achse im Stillstand
14	ROT_0	1	Drehzahl ist weit kleiner als Parameter
			745 MON_REFWINDOW

8.2.3 Profile Position Mode

In dieser Betriebsart (Mode of Operation =1) führt die Achse relative oder absolute einzelne Positionierbewegungen aus.

Tabelle 60.1			Profile P	osition Mode
Object No.	Object Name	Object Code	Туре	Attr.
0x607A	Target_Position	VAR	Integer32	rw
0x607D	Software Position Limit	ARRAY	Integer32	rw
0x6081	Profile_Velocity	VAR	Unsigned32	rw
0x6083	Profile_Acceleration	VAR	Unsigned32	rw
0x6084	Profile_Deceleration	VAR	Unsigned32	rw
0x6085	Quick Stop deceleration	VAR	Unsigned32	rw
0x6064	Position actual value	VAR	Integer32	r
0x607E	Polarity	VAR	Unsigned8	rw

Einheiten der Parameter werden über den Normierungsassistenten bzw. die Objekte aus der Factor Group eingestellt.

Struktur der Betriebsart

Betriebsartspezifische Bits im Steuerwort

Bit 4 - new Setpoint Bit 5 - Change set immediately Bit 6 - abs / rel Bit 8 - Halt

Tabelle 61.1

Profile Position Mode Bits im Steuerwort

Bit	Name	Value	Description
4	New set-point	0	Does not assume target position
4	New set-point	1	Assume target position
c.	Change Set immediately	0	Finish the actual positioning and then start the next positioning
5	change set initieulatery	1	Interrupt the actual positioning and start the next positioning
c	abe / rol	0	Target position is an absolute value
ь	aus / rei	1	Target position is a relative value
		0	Execute positioning
8	Halt	1	Stop axle with profile deceleration (if not supported with profile acceleration)

Betriebsartspezifische Bits im Statuswort

Bit 10 - Target reached Bit 12 - Set-point acknowledge Bit 13 - Following error Bit 14 - ROT_0

Tabelle 61.2

Profile Position Mode Bits im Statuswort

Bit	Name	Value	Description
10	Target	0	Halt = 0: Target position not reached Halt = 1: Axle decelerates
10	reached	1	Halt = 0: Target position reached Halt = 1: Velocity of axle is 0
12	Set-point	0	Trajectory generator has not assumed the positioning values (yet)
12	acknowledge	1	Trajectory generator has assumed the positioning values

Tabelle 61.3

Profile Position Mode Bits im Statuswort

Bit	Name	Value	Description
13	Following error	0	No following error
13		1	Following error
14	ROT_0	1	Achse im Stillstand Drehzahl ist weit kleiner als Parameter 745 MON_REFWINDOW

Funktionsbeschreibung

In diesem OPERATION MODE werden zwei unterschiedliche Möglichkeiten der Zielpositionsvorgabe unterstützt.

SET OF SETPOINTS:

Nach Erreichen der Sollposition fährt der Antrieb direkt die nächste Zielposition an, dabei wird die Achse nicht beim Erreichen der ersten Zielposition gestoppt.

SINGLE SETPOINT:

Nach Erreichen der Zielposition zeigt dies der Antrieb dem Master an. Danach erhält der Antrieb einen neuen Sollwert. Bei jeder Zielposition wird der Antrieb gestoppt, bevor zur nächsten Zielposition weitergefahren wird.

Die zwei Möglichkeiten werden über das Timing der Bits NEW SETPOINT und CHANGE SET IMMEDIATELY im Steuerwort und dem Bit SETPOINT ACKNOWLEDGE im Statuswort gesteuert. Diese Bits ermöglichen während einer laufenden Positionierung schon eine nachfolgende auszulösen.

Ist das Bit 'CHANGE SET IMMEDIATELY' "0" (durchgezogene Linie im oberen Bild) wird ein SINGLE SETPOINT vom Antrieb (1) erwartet. Ist der Sollwert zum Antrieb übertragen, aktiviert der Master die Positionierung durch Setzen des Bit "new set-point" im Steuerwort (2). Der Antrieb antwortet durch Setzen des Bits "set-point acknowledge im Statuswort" (3) nach dem Erkennen und Speichern der neuen Daten. Jetzt kann der Master das Bit "new set-point" (4) löschen. Danach signalisiert der Antrieb durch Löschen des Bits "set-point acknowledge", dass ein neuer Sollwert akzeptiert wird (5). In Bild löst der Mechanismus eine Drehzahl O nach Erreichen der Zielposition bei Zeit t1 aus. Nach der Meldung, dass die Zielposition erreicht wurde, kann die nächste Zielposition bei Zeit t2 ausgelöst werden.

8.2.4 Velocity Mode (U/f Betrieb)

Diese Betriebsart (Mode of Operation = 2) dient der Steuerung des Antriebs im frequenzgeregelten Betrieb (U/f Betrieb). Die Einheiten, der Sollwert und die Rampengrößen ergeben sich aus den Einstellungen der Factor Group. Siehe dazu auch Kapitel 5.4 "Einheiten und Normierungen".

Der YukonDrive® unterstützt folgende Objekte in dieser Betriebsart:

rabelle obii			verocity mode
Object No	Object Name	Object Code	Туре
0x6042	vl target velocity	VAR	Integer16
0x6046	vl min max amount	ARRAY	Unsigned32
0x6048	vl velocity acceleration	ARRAY	Unsigned32
0x6049	vl velocity deceleration	ARRAY	Unsigned32

In dieser Betriebsart muss das Gerät in der Einheit Hertz [Hz] normiert werden. Dazu müssen mit Hilfe des Normierungsassistenten im Bereich Standard / CiA-402 die folgenden Einstellungen vorgenommen werden:

 $\begin{array}{l} \mbox{Position} \to \mbox{rev} \\ \mbox{Geschwindigkeit} \to \mbox{rev} / \mbox{s} (=> 1/\mbox{s} => \mbox{Hz}) \\ \mbox{Beschleunigung} \to \mbox{rev} / \mbox{s} / \mbox{s} \\ \mbox{Danach sind noch die Begrenzungen einzustellen. Dies sind im Einzelnen:} \end{array}$

Tabelle 63.2

Tabello 63.1

Begrenzungen im U/f Betrieb

Objekt Nr	Objekt Name	Beschreibung	
0x6046	vl min max amount	Index	
		0	Min. Geschwindigkeit in Anwendereinheit
		1	Max. Geschwindigkeit in Anwendereinheit
Ux6048	vi velocity acceleration	Index	
		0	Geschwindigkeitsände- rung in Anwendereinheit
		1	pro Zeiteinheit
0x6049	vl velocity deceleration	Index	
		0	Geschwindigkeitsände- rung in Anwendereinheit
		1	pro Zeiteinheit

8.3 Zyklische Betriebsarten, Profilgenerierung in der Steuerung

Bei den im Folgenden beschriebenen zyklischen Betriebsarten liegt die Profilgenerierung auf Seiten der Steuerung, der interne Profilgenerator des Antriebs ist nicht aktiv. Der Antrieb interpoliert zwischen den zyklisch übertragenen Sollwerten (je nach Betriebsart Position, Geschwindigkeit, Drehmoment) der Steuerung.

8.3.1 Interpolated Position Mode

Die Betriebsart "Interpolated Position Mode" (Mode of Operation = 7) stellt neben dem Profile Position Mode eine weitere Möglichkeit zur Positionierung von Achsen über CANopen dar. Er wird verwendet, um mehrere Achsen (oder auch eine Einzelachse) koordiniert durch eine Steuerung zu bewegen.

Beim Interpolated Position Mode jedoch wird das Fahrprofil komplett von der Steuerung erstellt. Sie übergibt zyklisch grob interpolierte Positionswerte, zwischen denen der Antriebsregler die Feininterpolation (z. B. linear) übernimmt. Über die Veränderung der Sollpositionen pro Zeiteinheit wird demnach das Profil bestimmt, welchem die Achse folgen soll. Somit wird die Positionsregelung nicht alleine im Antrieb realisiert, sondern auf Ebene der Steuerung durchgeführt.

Folgende Objekte werden für diese Betriebsart vom Gerät unterstützt:

Tabelle 64.1

Unterstützte Objekte

Struktur Interpolated position mode

Object Nr.	Object Name	Object Code	Туре
0x60C0	Interpolation sub mode select	VAR	Integer16
0x60C1	Interpolation data record	ARRAY	Integer32
0x60C2	Interpolation time period	RECORD	Index0: Unsigned8 Index1: Integer8

Abbildung 64.2

Tabelle 65.1

Betriebsartspezifische Bits im Steuerwort

Bit	Name	Value	Description
	4 Enable IP mode	0	Interpolated position mode inactive
4		1	Interpolated position mode active
8		0	Execute the instruction of bit 4
	Halt	1	Stop axle

Tabelle 65.2

Betriebsartspezifische Bits im Statuswort

Bit	Name	Value	Description
10	Torget resched	0	HALT = 0: Position not (yet) reached HALT = 1: Axle decelerates
10	iu larget reached	1	HALT = 0: Position reached HALT = 1: Axle has velocity 0
10	Directly and a	0	Interpolated position mode inactive
12	IP mode active	1	Interpolated position mode active
14	Axle synchronized	0	Axle not synchronized
		1	Axle synchronized

8.3.2 Cyclic Synchronous Position Mode (nur EtherCAT®)

In dieser Betriebsart (Mode of Operation = 8) stellt die Steuerung zyklisch Positionssollwerte für den Antrieb zur Verfügung. Die Lage-, Drehzahl- und Stromregelung wird durch den Antrieb ausgeführt. Optional kann durch die Steuerung ein additiver Geschwindigkeits- bzw. Drehmomentsollwert als Vorsteuerwert übertragen werden.

Folgende Objekte werden für diese Betriebsart vom Gerät unterstützt:

Tabelle 65.3 Unterstützte				
Object Nr.	Object Name	Object Code	Туре	
0x607A	Target Position	VAR	Integer32	
0x60B1	Velocity Offset	VAR	Integer32	
0x60B2	Torque Offset	VAR	Integer16	

Abbildung 65.4

Überblick Cyclic Synchronous Position Mode

Betriebsartspezifische Bits im Statuswort

Bit	Name	Value	Description	
17	Target position	0	Target position ignored	
12	laiget position	1	Target position shall be used as input	
13	Following Error	0	No following error	
		1	Following error	

Tabelle 66.1

Betriebsartspezifische Bits im Statuswort

8.3.3 Cyclic Synchronous Velocity Mode nur (EtherCAT®)

In dieser Betriebsart (Mode of Operation = 9) überträgt die Steuerung zyklisch Geschwindigkeitssollwerte an den Antrieb, der die Drehzahl- und die Stromregelung ausführt. Optional kann durch die Steuerung ein additiver Geschwindigkeitssollwert sowie ein additiver Drehmomentsollwert für eine Drehmomentvorsteuerung übertragen werden.

Folgende Objekte werden für diese Betriebsart vom Gerät unterstützt:

Tabelle 66.2

Abbildung 66.3

Unterstützte Objekte

Object Nr.	Object Name	Object Code	Туре
0x60FF	Target Velocity	VAR	Integer32
0x60B1	Velocity Offset	VAR	Integer32
0x60B2	Torque Offset	VAR	Integer16

Überblick Cyclic Synchronous Velocity Mode

Betriebsartspezifische Bits im Statuswort

Tabelle 66.4

Betriebsartspezifische Bits im Statuswort

Bit	Name	Value	Description
10	Target \/alasitu	0	Target velocity ignored
12	Target velocity	1	Target velocity shall be used as input

8.3.4 Cyclic Synchronous Torque Mode (nur EtherCAT®)

In dieser Betriebsart (Mode of Operation = 10) überträgt die Steuerung zyklisch Drehmoment – Sollwerte an den Antrieb, der die Stromregelung ausführt. Optional kann auch ein additiver Drehmomentsollwert übertragen werden.

Tabelle 67.1 Unterst					
Object Nr. Object Name		Object Code	Туре		
0x6071	Target Torque	VAR	Integer16		
0x60B2	Torque Offset	VAR	Integer16		

Abbildung 67.2

Überblick Cyclic Synchronous Torque Mode

Betriebsartspezifische Bits im Statuswort

Tabelle 67.3

Betriebsartspezifische Bits im Statuswort

Bit	Name	Value	Description
12 Target To		0	Target torque ignored
	larget lorque	1	Target torque shall be used as input

8.3.5 Externe Drehzahl-/ Drehmoment Vorsteuerung

Beim Einsatz des Antriebsreglers im Cyclic Synchronous Position (CSP, siehe Kapitel 9.3.2) oder Cyclic Synchronous Velocity (CSV, siehe Kapitel 9.3.3) Mode ist es möglich, externe Vorsteuerwerte für Drehzahl bzw. Drehmoment von der Steuerung vorzugeben. Die interne Vorsteuerung des Antriebs muss dazu deaktiviert werden.

Den folgenden Tabellen sind die relevanten Einstellungen zu entnehmen:

Tabelle 67.4

CiA402 Objekte für die externe Vorsteuerung

Object No.	Object Name	Datentyp	Normierung
0x60B1	Velocity Offset	Integer32	Gemäß der Normierung für Drehzahlen (CiA402 Factor Group)
0x60B2	Torque Offset	Integer16	In [‰] bezogen auf Motornennmoment in Objekt 0x6076 D.h. ein Wert von 1000 entspricht dem Motornennmoment.

Tabelle 68.1

YukonDrive® Geräteparameter

Parameter	Funktion	Wert
375 - CON_IP_SFFScale	Skalierung Drehzahlvorsteuerung	0 – 100% bezogen auf den Vorsteuerwert
376 - CON_IP_TFFScale	Skalierung Drehmomentvorsteuerung	0 – 100% bezogen auf den Vorsteuerwert
379 - CON_IP_FFMode	Umschaltung der Vorsteuerquellen und spezielle Sollwert Formate	Siehe einzelne Subindizes
• Subindex 0	PositionHighResolution	0 = 32Bit Positionssollwert (Default)
• Subindex 1	Quelle Drehzahlvorsteuerwerte	0 = Interne Vorsteuerung (Default) 1 = Externe Vorsteuerung
• Subindex 2	Quelle Drehmomentvorsteuerwerte	0 = Interne Vorsteuerung (Default) 1 = Externe Vorsteuerung

Interpolationsarten

Beim Einsatz der externen Vorsteuerung via EtherCAT® kann sowohl mit linearer wie auch mit kubischer bzw. Spline- Interpolation gearbeitet werden. Die Einstellung der Interpolationsart erfolgt über den Parameter 370 – CON_IP. Verwenden Sie jedoch NICHT die Einstellung "SplineExtFF". Diese Interpolationsart ist einer anderen Betriebsart vorbehalten

Kontrolle der Vorsteuergrößen im DriveManager 5

Sie können die gesendeten externen Vorsteuergrößen auf 2 Arten im YukonDrive® überprüfen:

- Die Objekte zur Vorsteuerung befinden sich als Geräteparameter im Sachgebiet CANopen/EtherCAT®
- Mittels des internen Oszilloskops können die Größen nref_Ext (externe Drehzahlvorsteuerung) und mref_Ext (externe Drehmomentvorsteuerung) aufgezeichnet werden.

9. Emergency Object

Tabelle 69.1

Emergency Telegram

Byte	0	1	2	3	4	5	6	7
Bit:	07	8 15	16 23	24	. 39	40 47	48.	63
Profile	Dev	vice Profile CiA-4	02	Antriebsregler				
Fehler	Emerger Cod CiA-	ncy Error e It. 402	Error Register (Object 1001 h)	Fehlercode	Fehlerort	Betri (in	ebsstundenzäl vollen Stunder	nler 1)

Entscheidend für eine schnelle Lokalisierung sind Fehlercode und Fehlerort. In Byte 3 des Emergency Telegrams finden Sie den Fehlercode, der eine erste Gruppierung der Fehlerursache darstellt. Die genaue Fehlerursache wird durch den Fehlerort in Byte 4 ermittelt. Die Bytes 5, 6 und 7 enthalten den internen Betriebsstundenzähler des Gerätes.

CANopen-Fehler, d. h. falsche Konfigurationen, Busstörungen usw. werden durch den Fehlercode 0xFF00, angezeigt.

Hinweis: Bei Auftreten eines Fehlers führt der Regler eine Reaktion gemäß der parametrierten Fehlerreaktion aus. Diese sind individuell für einzelne Fehler einstellbar.

Hinweis: Die Zustandsanzeigen der 7-Segmentanzeige sind im Anwendungshandbuch erläutert.

Hinweis: Eine komplette Liste aller Fehlermeldungen des YukonDrive[®] mit der entsprechenden Zuordnung des Emergency Codes befindet sich im Anwendungshandbuch YukonDrive[®].

9.1 Fehlerquittierung allgemein

Gerätefehler können über folgende Mechanismen quittiert werden:

- Steuerwort Bit 7, flankengesteuert
- · Steuereingang mit programmierter Resetfunktionalität
- Hardwarefreigabe ENPO an Steuerklemme
- Bedienung über zwei Taster
- Bedienoberfläche DriveManager
- Schreiben des Wertes 1 auf den Parameter 153 MPRO_DRVCOM_FaultReset über die Bedieneinheit oder Bussystem

Hinweis: Eine detaillierte Liste aller Fehlermeldungen mit Abhilfemaßnahmen finden Sie im Anwendungshandbuch YukonDrive®

9.2 Fehlerquittierung über Bussystem

Eine Möglichkeit besteht durch das Objekt 6040, Steuerwort:

Durch eine steigende Flanke am Bit 7 im Steuerwort wird eine Fehlerquittierung durchgeführt. Das Zurücksetzen des Fehlers wird durch das Versenden folgender Emergency Message signalisiert:

Tabelle 69.2

Fehlerquittierung

ID	Datenbytes	Beschreibung
Emergency	00 00 00 00 00 00 00 00	Emergency Message Quittierung Fehler

Ist die Fehlerursache nicht behoben, fällt der Antriebsregler nach Senden einer weiteren Emergency Message wieder in Fehlerzustand.

10. Technologiefunktionen

10.1 Touch Probe

Mit Hilfe der Touch Probe Funktion können Positionen des Antriebs in Abhängigkeit bestimmter Eingangssignale erfasst werden.

Mögliche Eingangssignale sind:

- Digitaler Eingang ISD05
- Digitaler Eingang ISD06
- Nullimpuls

Über den Parameter 2285 "Touch probe function selector" kann zwischen verschiedenen Implementierungen umgeschaltet werden.

- CiA 402 Implementierung (noch nicht implementiert)
- Herstellerspezifische Implementierung

10.1.1 Beschreibung der herstellerspezifischen Implementierung

Um die Funktion nutzen zu können, muss zunächst der Parameter 2285 "Touch probe function selector" auf 2 = "BECK2" gestellt werden (Die Einstellung "BECK1" wird zur Zeit noch nicht unterstützt). Sollen Signale über die beiden digitalen Eingänge ISD05 und ISD06 erfasst werden, dann müssen diese mit Hilfe der Parameter 106 + 107 "MPRO_Input_FS_ISD0x" als Messtaster (Einstellung 15) konfiguriert werden. Die Parameter befinden sich im Sachgebiet "Konfiguration der Ein-/Ausgänge → Digitale Eingänge".

Abschließend müssen noch folgende Objekte gemappt werden:

Tabelle 70.1

RxPDO	0x60B8 Touch probe function	
TxPDO	0x60B9 Touch probe status 0x60BA Touch probe pos1 pos value	

Mit Hilfe des Objekts 0x60B8_h "Touch probe function" wird festgelegt, ob auf die fallende, die steigende oder auch auf beide Flanken des jeweiligen Signals getriggert werden soll. Durch Setzen des zugehörigen Bits (0 ... 4) wird die entsprechende Funktion aktiviert (Flankengesteuert). Das Auslesen der gespeicherten Position wird durch die Bits 8 ... 12 gesteuert. Nach dem Eintreffen des konfigurierten Signals muss eine neue Messung durch Rücksetzen und erneutes Setzen des entsprechenden Bits gestartet werden.

Tabelle 71.1

Objekt 0x60B8: Touch probe function

Bit	Wert (bin)	Wert (hex)	Beschreibung
0	00000000 00000001	xx01	Enable extern latch 1 (positive rise) über Baustein Touch Probe
1	00000000 00000010	xx02	Enable extern latch 1 (negative rise) über Baustein Touch Probe
2	00000000 00000100	xx04	Enable extern latch 2 (positive rise)
З	00000000 00001000	xx08	Enable extern latch 2 (negative rise)
4	00000000 00010000	xx10	Enable intern latch C (positive rise) über Baustein MC_Home
5-7	-	-	reserviert
8-12	00000001 00000000	01xx	Read external latch 1 (positive rise) über Baustein Touch Probe
	00000010 00000000	02xx	Read external latch 1 (negative rise) über Baustein Touch Probe
	00000011 00000000	03xx	Read external latch 2 (positive rise)
	00000100 00000000	04xx	Read external latch 2 (negative rise)
	00000101 00000000	05xx	Read intern latch C (positive rise) über Baustein MC_Home
13-15	-	-	reserviert

Das Objekt 0x60B9_h liefert den Status der Touch probe Funktion zurück. Wurde ein durch das Objekt 0x60B8_h aktiviertes Signal registriert, dann wird dies durch Setzen des entsprechenden Bits (0 ... 4) im Statuswort angezeigt.

Objekt 0x60B9: Touch probe status

Bit	Wert (bin)	Wert (hex)	Beschreibung
0	0000000 00000001	xx01	External latch 1 valid (positive rise) über Baustein Touch Probe
1	0000000 00000010	xx02	External latch 1 valid (negative rise) über Baustein Touch Probe
2	00000000 00000100	xx04	External latch 2 valid
3	00000000 00001000	xx08	External latch 2 valid
4	00000000 00010000	xx10	Internal latch C valid (positive rise) über Baustein MC_Home
5-7	-	-	reserviert
8-11	00000001 00000000	01xx	Acknowledge value external latch 1 (positive rise) über Baustein Touch Probe
	00000010 00000000	02xx	Acknowledge value external latch 1 (negative rise) über Baustein Touch Probe
	00000011 00000000	03xx	Acknowledge value external latch 2 (positive rise)
	00000100 00000000	04xx	Acknowledge value external latch 2 (negative rise)
	00000101 00000000	05xx	Acknowledge value internal latch C (positive rise) über Baustein MC_Home
12-15	00010000 00000000	1xxx	reserviert
	00100000 00000000	2xxx	reserviert
	01000000 00000000	4xxx	reserviert
	10000000 00000000	8xxx	reserviert

Die gespeicherte Position wird nach dem Setzen der Bits 8 – 11 im Statuswort in das Objekt 0x60BA_h geschrieben.
Zeitliches Ablaufdiagramm:

Am Beispiel des Messtasters ISD05 und der zugehörigen Bits ist der zeitliche Ablauf einer Messung dargestellt. Für die übrigen konfigurierbaren Signale gilt der zeitliche Ablauf entsprechend.

10.1.2 Steuerungsgeführtes Homing

Mit Hilfe der Touch Probe Funktion besteht die Möglichkeit, eine Achse steuerungsgeführt zu referenzieren. Dazu können alle im Kapitel 10.1.1 beschriebenen Eingangssignale benutzt werden.

10.2 Rundtischfunktion

Die Rundtischfunktion wird im Drive Manager 5 mit Hilfe des Normierungsassistenten im Sachgebiet Bewegungsprofil \rightarrow Normierungen / Einheiten eingestellt.

Eine ausführliche Beschreibung der Funktion befindet sich im Anwendungshandbuch des YukonDrive[®]. Zur Konfiguration der Funktion werden die folgenden Objekte verwendet.

Tabelle 73.2 Ubjekte für Rundtischfunktion				
Object Nr.	Object Name	Object Code	Туре	
0x607B	Position range limit	ARRAY	Integer32	
0x60F2	Positioning option code	VAR	Unsigend16	

Das Objekt 0x60F2_h "Positioning option code" wird für die Rundtischfunktion abweichend von der nach CiA 402 festgelegten Normierung verwendet. Es sind nur die Bits 6 und 7 von Bedeutung (siehe Tabelle).

Tabelle 73.3		Bitbelegung Objekt 0x60F2	
	Wert (hex)	Bedeutung	
	0x00	Wie Linear	
	0x40	Drehrichtung links	
	0x80	Drehrichtung rechts	
	0xC0	Wegoptimiert	

11. EDS-Datei, Objektverzeichnis, Parameterliste

11.1 EDS-Datei, Objektverzeichnis

Für die Geräte steht ein EDS-File zur Einbindung in den CAN-Master zur Verfügung. Dieses wird mit der Firmware bereitgestellt. Es enthält sämtliche CAN-Objekte der Antriebsregler.

HINWEIS: Der YukonDrive[®] besitzt Parameter, deren Default Werte im Gerät von den Default Werten im EDS File abweichen können. Es handelt sich dabei um endstufenspezifische Parameter, deren Inhalte abhängig von der Baugröße sind.

Beispiele für solche Parameter sind:

Para 302 - CON_SwitchFreq Para 307 - CON_VoltageSupply Para 651 - DV_CAL_VDC

Deutschland Harmonic Drive AG Hoenbergstraße 14 65555 Limburg/Lahn

T +49 6431 5008-0 F +49 6431 5008-119 info@harmonicdrive.de www.harmonicdrive.de Technische Änderungen vorbehalten.